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Abstract 

 
Defending the cyberspace domain has taken a higher priority as the internet has 

become an enabler and integrated component of the defense strategy. At the same time, it 

has also opened additional channels for enemy exploitation. Current defensive systems 

focus primarily on network data, and are plagued by a high number of false positives 

and/or duplicate alerts with no ranking of their importance. This work presents a hybrid 

network-host monitoring strategy, which fuses data from both the network and the host to 

recognize malware infections. This research seeks to categorize systems into one of three 

classes: Normal, Scanning, and Infected.  Normal is defined as a computer surfing the 

World Wide Web, with antivirus and malware shields up and running, any threats are 

assumed to be random. Scanning is defined as the perpetrator having a partial or 

complete map of the network and knowing trying exploits at targeted IPs or IP ranges. 

Infected is defined as an operational computer surfing the World Wide Web and having 

an active trojan infection as defined by the Antivirus alerting to an infection. The 

objective is accomplished by fusing data from multiple network host sensors and 

extracting features from network traffic using the Fullstats Network Feature generator 

and from the host using text mining, looking at the frequency of the 500 most common 

strings and analyzing them as word vectors. Testing on data collected at AFIT from the 

2010 Cyber Defense eXercise and a controlled data collection of a Normal Windows 
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Vista host and an Infected Vista host. Hybrid method results outperformed host only 

classification by 31.7% and network only classification by 25%. The new approach also 

reduces the number of alerts while remaining accurate compared with the commercial 

Intrusion Detection System (IDS) SNORT. These results improve the relevance of alerts 

so that even the most typical users could understand alert classification messages.  A key 

benefit of the hybrid data fusion methodology is mission relevant information by 

identifying and reporting the progression of an attack through the three stages. 
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I. Introduction 

 

The industrial cyber security report produced by the British Columbia Institute of 

Technology, and the PA Consulting Group in the April 1st 2005 issue states that there has 

been a 10-fold increase in the number of successful cyber attacks on infrastructure 

Supervisory Control and Data Acquisition (SCADA) systems since 2000 [5]. The 

Department of Defense (DoD) officials have also observed that the number of attempted 

intrusions into military networks has increased, from 40,076 incidents in 2001, to 43,086 

in 2002, to 54,488 in 2003, and to 24,745 as of June 2004 [5]. A newer report, the 2007 E-

Crime Watch Survey from CSO Magazine found the number of security incidents 

increased for the majority of companies polled from the period between 2005 and 2007. 

These findings were based on the work of the U.S. Secret Service, Carnegie Mellon 

University Software Engineering Institute’s CERT Coordination Center and Microsoft [6]. 

However, the consequences of these attacks on military operations are not as clear as 

financial valuations do not paint the whole picture when national security is at risk. This 

prompts a predominantly wait and see stance for much of policy development in this 

arena. 

Without a doubt, over the last decade, malware has become a primary source of 

malicious cyber activity [1]. Malware encompasses a whole progression of escalating 

activities that include scanning, (distributed) denial-of-service (DOS), and direct exploit 

attacks, taking place across the Internet. Among its various forms, botnets in particular 
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have recently distinguished themselves to be among the premier threats, making up a high 

volume of total internet traffic and slowing the information superhighway for all other 

users [19]. Like the previous generation of computer viruses and worms, a bot is a self-

propagating application that infects vulnerable hosts through direct exploitation or Trojan 

insertion. However, bots distinguish themselves from the other malware forms by their 

ability to establish a command and control (C&C) channel through which they can be 

updated and directed. Once collectively under the control of a C&C server, bots form what 

is referred to as a botnet. Botnets are effectively a collection of zombie computing assets 

employed for a variety of illicit activities, including information and computing resource 

theft, SPAM production, hosting phishing attacks, or for mounting distributed denial-of-

service (DDoS) attacks.  

Over the last decade, the term cyberwar has developed from a mere virtual threat 

to more a concern of national security between nation states as demonstrated by recent 

examples from Estonia’s internet outage in 2008 [7], and the new software “worm” 

Stuxnet [17]. The 2008 Russian invasion of Georgia was reportedly accompanied by a 

parallel hit on their information networks [35]. Stuxnet spreads via infected memory sticks 

plugged into a computer’s USB port. Stuxnet checks to see if WinCC is running. If it is, it 

tries to log in, to install a clandestine “back door” to the internet, and then to contact a 

server in Denmark or Malaysia for instructions. Microsoft said in August 2010 that 

Stuxnet had infected more than 45,000 computers. At Iran’s uranium-enrichment plant at 

Natanz, inspections by the International Atomic Energy Agency found that about half 

Iran’s centrifuges are idle and those that work were yielding little. Some say a fall in the 
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number of working centrifuges at Natanz in early 2009 is evidence of a successful Stuxnet 

attack. There is little downside to such an attack, because it would be virtually impossible 

to prove who did it, but new reports indicate [42] that the sophistication of the code 

suggests the effort was backed by a national entity and there is a slew of technically 

capable candidates. 

1.1. Problem Statement 

Network-based intrusion detection systems (NIDS) and intrusion prevention 

systems (IPSs) are currently the go-to technology for defending against external network 

attacks. Traditional NIDS, whether signature based [48] or anomaly based [3], focus on 

inbound packets flows for signs of malicious point-to-point intrusion attempts. Often, a 

NIDS is installed at an access gateway, to watch over a network consisting of a multitude 

of individual hosts and it is difficult to tell if any one of those is a target or gets 

successfully infected by an alert thrown from the NIDS. Network IDS have the capacity to 

detect initial incoming intrusion attempts, but at the sacrifice of a very high false positive 

rate and an overabundance of relevant true positives as seen by the prolific frequency with 

which they produce alarms in operational networks [19]. Furthermore, limited throughput 

often requires sampling of traffic; as it would overwhelm the NIDS to inspect every 

packet. 

On host systems, antivirus (AV) software is relied upon to prevent malicious 

downloaded code from being installed. Unfortunately, AV scanning of executables for 

malware detection faces a number of significant problems, one being that current malware 

programs typically implement run-time packing and self-modifying code [28]. Therefore, 
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the instruction present in the binary on disk is typically different than those executed at 

runtime. Distinguishing and preventing a successful local host infection from the myriad 

scans, intrusion attempts and AV evasions is ultimately the real goal of effective and 

intelligent network security applications. Statistical based methods of intrusion detection 

should defend better against a zero day attack, which takes advantage of a bug that neither 

the software’s creators nor users are aware of. By finding software vulnerabilities before 

the software’s manufacturers, a programmer can create a virus or worm that exploits that 

vulnerability and harms computer systems in a variety of ways. While not every zero day 

attack truly occurs before software producers are aware of the vulnerability, developing a 

patch can take time. Alternatively, software producers may sometimes hold off on 

releasing the patch because they do not want to inundate customers with numerous 

individual updates. If the vulnerability is not particularly dangerous, software producers 

may choose to hold off until multiple updates are collected and release them together as a 

package. Still, this approach can potentially expose users to a zero day attack. 

Although there are several NIDS and HIDS implementations, there is currently no 

commercial IDS and few if any research in this field which fuses data from both of these 

sources and applies Machine Learning algorithms for classification of the stages and the 

progression of a cyber-attack. There are a few commercial IDS that still use signature 

based detection but have augmented the signatures by incorporating host data, examples 

being McAfee Entercept and IBM’s Proventia IPS. In the only published paper available 

from the literature search on a hybrid methodology by Depren [8], the hybrid 

methodology was tested on the flawed MIT Lincoln Labs KDD99 dataset which entirely 
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consists of TCP dumps and no host data. Depren does not explain how the host misuse 

detection module contributes to the test results, whereas this thesis will collect host data 

alongside network packet dumps. This work seeks to create a proof of concept 

methodology for the fusion of network and local host data which will enable an analyst to 

filter much of the extraneous network sensor alerts and alleviate the noise issues that are 

commonplace with traditional NIDS and HIDS. The method developed performs anomaly 

detection based on modeling patterns of features rather than matching a set of features 

used in more traditional signature based models. These latter models concentrate on the 

fixed features of a specific malware instance, and as a result, are often easily evaded by 

code obfuscation or polymorphism, making it straight forward to modify and alter their 

appearance without changing the behavior of the running script for successful infiltration 

[28].  

 1.2. Impact of Research 

A signature-based IDS performs well for detecting known threats, but cannot 

properly identify a novel threat; it must have a signature in its database which exactly 

matches a given threat in order to detect it [19]. System administrators must constantly 

update threat-detection signatures to keep up with the ever expanding threat pool. 

Additionally, detecting a network attack solely through signature-based systems 

has been shown to be unsustainable in both the short and long term [46]. As quickly as a 

signature is created for defense against an exploit, a hacker can unleash a slightly tweaked 

variant, requiring a completely new signature for detection. This is why zero day exploits 
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are so doubly damaging; a signature has not been created and cannot be deployed in time 

to prevent all possible damage. 

There are several NIDS (SNORT, BRO, Fragrouter…) and HIDS (Prelude, 

OSSEC, Osiris…)  available, some of these have aggregators but none combine data from 

both locations to classify the state of attack, the work presented in this thesis will 

demonstrate that having information available from both host and network increases 

classification of attack accuracy much more than each alone.  

Given the DoD's heavy dependence upon cyberspace, the vulnerable nature of 

cyberspace, and the multitude of threats which aim to undermine its confidentiality, 

integrity and availability, continued research of this forward edge domain is paramount. 
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 1.3. Research Overview 

One major difficulty facing the cyber situational awareness research community 

relates to the hyper-dimensionality of the threat search space. Due to the sheer size of the 

cyberspace domain and the limitations of processing power and lack of data abstraction, 

the environment will always be partially-observable. Stated otherwise, it is infeasible to 

try all combinations of sensor data in real time, sensors need to be wisely chosen for the 

system based on its application environment. Theoretically, given infinite time, sensors, 

storage and computing power, perfect situational awareness can be derived. Practically, 

any situational awareness obtained will be constrained by the resources allocated, data 

available, abstraction ability of the system and the time bounds acceptable to solving the 

problem. Situational awareness is a computing application like any other, concerned not 

only with processing effectiveness, but also its efficiency.  

 There are also limits as to how much we should rely on software for 

information protection. At hand, there exists many other ways a hacker may try to enter 

our network, including social engineering lures to gain passwords from unsuspecting 

users, or an insider could completely bypass the network detection sensors and exfiltrate 

data with portable media devices by having physical access to the host. 

1.3.1. Past Research Summary 

Given that signature-based sensors are not feasible for detecting all threats, 

researchers must consider alternative solutions [47] [3][19]. Researchers have proposed 

many types of threat detection methods, a representative few of these are discussed further 
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in Chapter 2. The bulk of the research efforts for threat detection thus far focuses on 

developing methods relying solely on network traffic [21] [15], solely on event logs [34] 

[50], or solely on system calls[45]. Unsurprisingly, due to the pressures of finite resources 

and push to select the fewest features to process, little or no research efforts thus far has 

attempted to combine data from various system sensor categories, such as file I/O, 

network traffic and process meta data, in order to form a holistic picture of what data is 

most relevant for the identification of threats. Situational awareness research aims to bring 

together raw data to formulate higher level views. This requires transforming the data 

from its raw form into data which is capable of informing decisions. 

1.3.2.  Problem Statement and Hypothesis  

The present bane of intrusion detection systems is the high incidence of false 

positive alerts, the alerting of malicious activity when it is not actually present [49]. There 

is a clear trade-off for a system that catches more potential threats; it means that it will 

also catch more benign anomalies [39]. More often than not, most alerts will be benign 

and everyone knows the story of the boy who cried wolf, the danger being that system 

administrators will eventually start disregarding even a true threat. A system administrator 

or security personnel must sift through these false alerts in order to locate true positive 

alerts which point to real threats. In order to improve the accuracy of IDS and ease the 

burden on system administration personnel, a methodology for reducing the incidence of 

false positive alerts, while accurately identifying malicious events is needed. 

This thesis presents a methodology to utilize the information provided from two 

sources, host and network sensors to expand cyberspace data understanding for the 
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purpose of improving threat detection accuracy. By identifying relevant features from an 

array of sensor data sources, this methodology will identify not only if a system is under 

attack or not, but also what stage an attack is occurring.  

The raw host data is obtained using Windows SysInternals tools and the network 

traffic is processed with the Fullstats Packet Feature Generator. The resulting features files 

are then classified using Weka’s support vector machine algorithm to classify and test 

effectiveness. The data collection process involved two environments, The Cyber Defense 

eXercise and a Vista Machine surfing the internet. Both host and network attributes were 

formatted into CSV format, using 248 numerical packet metrics for the network data and 

500 most frequent string n-grams as attributes in the case of SysInternals host data text 

files. Weka’s results were supportive of the hypothesis that fusing host and network data 

is a more accurate classification method and detailed results are presented in Chapter 4. 

1.3.3. Data Source 

 Two data sources are used in testing. The first is an isolated network established at 

AFIT during the 2010 Cyber Defense eXercize (CDX). The CDX challenges the student 

participants to build a network with all of the services required by the National Security 

Agency’s (NSA) directive--including e-mail, file sharing, network printing, a Web server, 

and a bulletin board system. The mission is to keep those services running while thwarting 

attempts to compromise. This year, all teams built their service providing systems or 

servers from scratch, and received workstation virtual machines from the NSA. 

Participants are directed not to patch the workstations without prior approval. It was 

expected that the NSA would find their way into some of the systems regardless of how 
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tightly they were locked down, although it turned out not to be the case for the servers 

monitored. The threats tend to cover the full range from downloaded attachments and 

links to malicious Web sites, to direct scanning, enumeration, and attempts at exploitation. 

 A massive amount of data was collected of AFIT 1 team’s servers and the 

analysis was ultimately done on the DNS server running Windows Server 2003 using 

memory dump utility win32dd and SysInternals Suite tools to be further detailed in 

Chapter 3. AFIT 1 succeeded in preventing NSA infiltration, but as a result, data was of 

only one category: scanning. To remedy the situation, data for the normal and infected 

classed were obtained on a test network consisting of a Windows Vista host connected to 

the Internet using the same collection tools. The host is infected via visits to known 

malicious websites as listed in the malware domain list and infection was verified by 

antivirus software. 

1.3.4. Assumptions and Limitations  

There three predominant limitations and assumptions of this research are that the 

CDX network was inconsistent and uncontrolled, that the sensors impacted the normal 

execution of the system, and there was only partial observability into the exercise conduct. 

The host features were created from data mining the raw text files and thus depends 

heavily on the application generating these files as they could change the output formats in 

later versions. Data collections were also of mixed sources (CDX and Vista internet 

networks) which made it artificially easier for classification than would typically occur. 
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1.4 Summary 

 As discussed, doing research to select the lightest sensors for needed performance 

metrics to extract the best features from is critically important. And by combining network 

and host sensors, the alerts can be made both more accurate and informative than at 

present, underlying the importance of this research. This chapter serves as an introductory 

look at both the current status and the problems of this field of study. Chapter 2 delves 

into the established research in the area of intrusion detection, classification methods and 

feature selection approaches. Chapter 3 outlines a methodology for data collection, 

preprocessing and analysis. Chapter 4 provides results of the experiments and an analysis 

of why text mining falls short of the hypothesis for this investigation. Chapter 5 

summarizes this thesis’ effort, details the contributions of this work, and offers 

recommendations for future work. 
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II. Literature Review 

 

This chapter presents an overview of the existing technologies that are applied to 

solve the problem of increasing the accuracy of attack classification using host and 

network data in synergy. It provides background of the current research methodologies 

and approaches that identify malicious activity, either using only host data [55] or only 

network data [50]. It also underscores that approaches that use both are not identified in 

the literature. This is not to say that they do not exist as new papers are output almost on a 

daily basis and anyone searching this field may come across something that was not in the 

search list at the time this compilation was put together. The topics include a discussion of 

intrusion detection systems followed by an overview of the most common machine 

learning techniques. Finally, it concludes by a brief discussion of the machine learning 

techniques and features employed in this research.  

2.1. Types of IDS 

The following subsections will describe the types of Intrusion Detection Systems 

(IDS) and their functions. 

2.1.1. Network Intrusion Detection Systems (NIDS)  

Network-based intrusion detection systems are designed to monitor network traffic 

and are positioned in proximity to the firewall at the border of an intranet to the internet 

[48] [60] [18]. Network intrusion detection systems monitor internet packets for 
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suspicious content and either raises an alert about possible malicious content or in the case 

of active Network Intrusion Prevention, block those packets entirely. 

A network-based IDS typically utilizes a network adapter running in promiscuous 

mode to monitor and analyze all traffic in real-time as it travels across the network [48] 

[60]  [43]. Its attack recognition module uses four common techniques to recognize an 

attack signature: 

• Pattern, expression or byte-code matching, 
• Frequency or threshold crossing 
• Correlation of lesser events 
• Statistical anomaly detection 
• Flow based 

NIDS are vulnerable to being overwhelmed by the sheer number of packets that 

they are required to inspect [48]. Depending on the amount of analysis performed upon 

each packet, a NIDS could be incapable of running real-time for one computer without 

lag, yet in theory a NIDS could be tasked with a network of tens or even hundreds of 

computers. This issue can be relieved somewhat through optimization of the computer 

hosting the NIDS and by reducing the amount of analysis performed on each packet, by 

implementing techniques for shallow packet inspection. 

The vast majority of NIDS are focused on packet headers [3] [38] [50] [37] 

because of the difficulties in sufficient computing resources otherwise needed in reading 

the packet payloads, but a rare few do exist [59]. There is a vast array of machine learning 

algorithms employed in analyzing packet headers which are detailed in the discussion on 

machine learning algorithms for IDS, Section 2.2. 
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One example of the creative use of NIDS research is alert correlation. Nearly all of 

the proposed alert correlation methods are based on syntax-oriented approaches. For 

example, Wei [60] exploits the semantics of attack behaviors, and presents the semantic 

vector space model to extract and classify the attack scenarios automatically. Wei [60] 

uses first order predicate logic (FOPL) and linguistics to classify DDoS computer attacks 

based on features derived from NIDS alert streams. FOPL is a form of automated 

reasoning and here, it aids in analysis of a large volume of data collected from an NIDS. 

Wei [60] presents a semantic vector space model that organizes the raw NIDS alerts to 

extract features using the common text mining term frequency and the inverse document 

frequency (TF/IDF) approach and categorizes the attack scenarios, improving upon 

current IDS alerts.  

Principal-subordinate Consequence Tagging Case Grammar (PCTCG) [60] 

converts the aggregated NIDS alerts into uniform streams. PCTCG is based on Case 

Grammar, which has many advantages. First, Case Grammar structure specifies the 

semantic relations between a verb and its slots. Second, the Case Grammar cab is easily 

represented by a semantic network, which includes abundant semantic relations to express 

the alerts associations. Third, unlike the syntactic level, Case Grammar theory is deeply 

semantic, which means it does not change under grammatical transformation. PCTCG 

uses First-order Logic (FOL) as the alert representation and reasoning language. In 

simulations, the backward chaining language Prolog is used for logic programming of 

predicate logic. First-order attack resolution works under the Principal-subordinate 

relation. When one alert is in the subordinate phase and its subordinate keywords are in a 
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specific relationship with the principle alert, these two alerts are correlated. Based on the 

attack ontology and alert contexts, alerts are represented as attack semantic space vectors. 

Text categorization techniques are then applied to categorize the intrusion stages. In order 

to classify which intrusion category an alert a belongs to, the similarities of a’s semantic 

vector and all category vectors are measured. The alert a is then assigned to the category 

with the highest value. 

 In simulations, the number of alerts had decreased to 29.1%, and 12.2% 

respectively [60]. The correct classification rates for three intrusion stages: gather 

information, making enable, and launching attack are also presented. The method is fast, 

the reasoning time is far less than the alert inter-arrival time. Simulation results also show 

the scheme not only performs as well as the traditional alert correlation technique, but also 

facilitates intelligent semantic reasoning. There are limitations which Wei identifies as a 

compromise between computational power/speed and accuracy of categorization in the 

form of the Alert Semantic Context Window Size.  

2.1.2. Host Intrusion Detection Systems  

Host-based intrusion detection systems are installed directly on a computer and 

they monitor its processes for evidence of possible intrusions or intrusion attempts into the 

computer system [28]. Examples of such evidence include, but are not limited to log files, 

system processes, internet usage, file operations, Windows registry operations, and any 

correlation schemes the designer of the IDS believes will provide information about 

possible attacks and intrusion attempts. 
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Host-based intrusion detection started in the early 1980s before networks were as 

prevalent, complex and interconnected as they are today [24]. In this simpler environment, 

it was common practice to review audit logs for suspicious activity.  

Host-based IDS have grown to include other technologies. One popular method for 

detecting intrusions checks key system files and executables via checksums at regular 

intervals for unexpected changes [24]. The timeliness of the response is in direct relation 

to the frequency of the polling interval. Finally, some products listen to port activity and 

alert administrators when specific ports are accessed. This type of detection brings an 

elementary level of network-based intrusion detection into the host-based environment 

Host-based intrusion detection systems also have limitations to balance their 

successes. These include a lack of portability, storage requirements, and vulnerability. 

Host-based intrusion detection systems are usually not portable because they are designed 

to protect a certain type of machine with a specific operating system. For example, 

providing the same service to a computer running Apple OS X without significant 

modifications to a system written for MS Windows 7 is still very much a challenge. This 

limits the portability of a given host-based intrusion detection system. HIDS are also 

limited by storage requirements, since they are installed directly on the machine they are 

tasked to protect, so a trade-off must be made between the detection capabilities of the 

IDS and the functionality of the host machine [18]. This presents a challenge to the next 

generation melding of Network and Host IDS, as these will likely include the limitations 

imposed by the specificity of the host OS.  
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2.1.3. Hybrid Network Host Intrusion Detection Systems  

Both network- and host-based IDS solutions have unique strengths and benefits 

that complement each other [24]. A next generation IDS, therefore, must include tightly 

integrated host and network components. Combining these two technologies will greatly 

improve network resistance to attacks and misuse, enhance the enforcement of security 

policy and introduce greater flexibility in deployment options. 

Figure 2.1: Types of IDS - ISS.net White Paper [24]. 

Indeed, there is significant research in the area of consolidating network security 

alarms into coherent incident pictures [24]. One major vein of research in intrusion report 

correlation is that of alert fusion, clustering similar events under a single label [58]. The 
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primary goal of fusion is log reduction, and in most systems similarity is based upon either 

attributing multiple events to a single threat agent or providing a consolidated view of a 

common set of events that target a single victim. The botnet infection problem does not 

satisfy either criteria and makes the feasibility and usefulness of such a goal questionable. 

The botnet infection process spans several diverse transactions that occur in multiple 

directions and potentially involves several active participants. A more applicable area of 

alert correlation research is multistage attack recognition, in which predefined scenario 

templates capture multiple state transition sequences that may be initiated by multiple 

threat agents [45]. While botnet infections do regularly follow a series of specific steps, it 

is rare to accurately detect all steps, and just as difficult to predict the order and time-

window in which these events are recorded. 

Erskine [11] used data mining techniques to create a clearer picture of the events in 

escalating stages of attack. His work parses the information generated by host sensors and 

packet captures to uncover relationships between data, leading to a fuller understanding of 

the critical events occurring on a computer under normal, scanning and exploit conditions 

while reducing the burden to the system administrator with more accurate alerts and fewer 

false positives. A sampling of features used include summary process data, such as 

memory utilization, user and system time, number of threads and handles; packet-level 

metrics and network volumetric data such as number of bytes sent/received per protocol; 

DLL counts and changes, port changes and states, process numbers and logon types, event 

traces and counts, just to name a few. The classification is performed with an ANN using 

Matlab. The process used to select these features was via manual analysis of the data 
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collected. In contrast, this work is based on data that more closely resembles an 

operational environment, and uses network features from research that is popularly cited 

to show proven performance in application identification [43]; this is in conjunction with 

text mining of host data, something that has not been studied in existing literature. 

2.2. Network Intrusion Detection Datasets 

Production of accurate and realistically representative training and testing sets for 

IDS research is a real and ongoing challenge [38]. Several standard datasets have been 

found to be faulty [38] and real effort needs to be put into the data collection process if 

results from new algorithms and approaches that claim to be improvements are to be 

trusted. 

 McHugh [38] provides a critique of the Lincoln Lab's procedures in the creation 

of the 1998 (and some of the 1999) IDEVAL dataset. His main criticisms included their 

assumptions made without corroborating evidence or descriptions, the traffic density and 

uniformity of the dataset, their odd ROC curves used for analysis, and their procedures for 

scoring IDSs that make little or no sense with respect to the intrusion detection field. In 

conclusion, McHugh finds the IDEVAL dataset a step in the right direction in providing 

intrusion detection testing data, but finds many errors in the process that make the dataset 

only of limited utility for testing intrusion detection systems. 

Maxion and Tan [36] propose a system for benchmarking anomaly-detection 

systems, investigating whether the regularity of a data set influences the effectiveness of 



 

36 
 

the IDS. Artificial datasets were generated with a given entropy value between 0 and 1. 

Results confirm that regularity of the data set affects the effectiveness of the IDS. 

The majority of research performed on intrusion detection datasets has focused on 

those consisting of network packet traces of packet header information. Testing of 

methodologies at least requires a dataset containing two types of packets: a clean dataset 

for training to establish a baseline and a dataset including labeled attacks for testing 

performance. Such a dataset is difficult to obtain due privacy laws; Google is a prime 

example of a public company that has paid penalties for running aground of this issue, for 

example, with the violation of New Zealand privacy law for its mapping project in 2010 

[10]. Packet traces can contain personally identifiable information in its payload and must 

be scrubbed of user names and passwords as a minimum measure. This is currently a 

tedious process which could easily overwhelm any research effort, trying to build a 

program that could automate the process of filtering out users, passwords, street addresses, 

and phone numbers in the payloads of packets. There is also a fine line between cleaning 

data while preserving its usefulness. It is difficult to completely and reliably anonymize 

these traces without destroying the value of the packets for researchers and testers of 

intrusion detection systems.  

Often, storing personally identifiable information is necessary to identify the 

perpetrator of an internet attack just as how it is necessary for law enforcement to keep a 

national database of fingerprints and DNA. For many IDS, even storing such information 

in a short term database could heavily influence the success of detection, adding the 

capability to correlate certain combinations of common usernames and passwords to an 
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intruder trying to guess access requirements as an example. The anonymity of the internet 

serves as both a sanctuary to those who wish to disrupt and as a hostile battleground to 

those seeking to prosecute illegal criminal activities.  

Because most prior research has focused on either network features [3] [59] [38] 

[50] [37]] or host features [28] [18] [34] [50] [45], there are no publically available data 

collections that have network trace packets accompanied by memory images, process 

monitor information, or host logs of any sort let alone labeled data. With the most 

commonly used internet packet sets already known to be tainted [38] [36], NIDS research 

papers have accuracy ratings that should be questioned. Hybrid systems will be further 

stunted with results that will be hard to compare and reproduce if there are no publically 

available data sets that all researchers could test against.  

Due to such severe limitations, data for this thesis was collected from a simulated 

exercise and may not be representative of a real world enterprise network and the actual 

work conducted on the network. In addition to that handicap, the red team, the NSA for 

this exercise, did not provide details as to the type of attack and the times they were 

attempted, leading to questions of accurate labeling. There was also a divergence in the 

mission of the exercise and the mission of this research; the exercise was a resounding 

success in that NSA failed to penetrate and disrupt the team’s services but that also meant 

the collected data is lopsided in terms of having a representative set that would contain 

samples of both normal and infected hosts. Thus, data had to be supplemented to be able 

to provide additional classes using a setup that differed quite significantly from the 

environment and host machine in CDX. The results therefore, are highly subject to 
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fluctuation if tested in any other scenario. For example, in real world usage, IPSEC is 

cumbersome and is not widely deployed as network protection but it was the AFIT team’s 

primary means of security so results and classification models applied on this dataset are 

not expected to carry across differing platforms. It is a proof of concept and relative trends 

are expected to hold in a variety of situations based on the fact that Moore developed his 

packet features generator from extensive testing on a real university network [42]. 

2.3. Limitations of Statistical Methods  

The advantages of anomaly detection systems include lower storage requirements 

than a signature detection system. The library it requires for everything that is normal is 

orders of magnitudes smaller than the signature library, or everything that is known to be 

abnormal. This reduces the amount of space required by an anomaly detection system. 

However, the limitations of the datasets previously mentioned also have a huge affect on 

the efficacy of pattern matching and statistical methods. Pattern matching relies on 

‘learning’ the probability weightings for correlation of subtle differences to models of 

malicious abnormal activities. There are many cases where this is not the most optimal 

learning strategy. Consider the simple situation of a spam filter blocking. Some spam 

filters will block emails that contain words or phrases that have been deemed common to 

spammers but that also means that a friend you know not to be spammer will get blocked 

even if they write an email to say, only discuss spamming, and that you actually want to 

read. Unless you add them to your safe list, a list that may continue to grow over the life 

of your account, you may miss many emails that get misclassified as spam. Machine 

learning methods are still many generations behind humans in determining intent, better 
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known as semantics. Machine learning is also very heavy on finding correlations that 

provide the most information gain, so that the subtlety in the variety of relationships 

connecting two things together becomes a concern. Say, you are in an environment where 

Google Chrome is the dominant browser and JavaScript is enabled. An attack is underway 

that is aimed at a vulnerability in JavaScript independent of browser type but what the 

algorithm learns is that that the attack is correlated to Chrome users because it does not 

understand the underlying mechanism and is fooled by the prominence of Chrome 

browsers in that particular environment. The JavaScript correlation is more subtle and is 

overwhelmed by the information gain statistics of the browser type. Thus the new alert 

database update that is released to the general public does not help those using Internet 

Explorer even though they too can be targeted and does not help users of Chrome with 

JavaScript disabled, generating a lot of false positives.  

The process to ‘unlearn’ a bad correlation can take as long as it did to ‘learn’ it in 

the first place, wasting precious time and resources. While humans also learn empirically, 

we also have other methods, such as discovery processes like the scientific method, 

troubleshooting charts or sleuthing out the underlying causes of unwanted behavior, 

mostly avoiding the more time consuming route of unlearning by waiting for the 

probability weights to change. Even the most advanced Artificial Intelligence algorithm 

cannot yet determine when best to switch methods of problem solving so that this results 

in the necessity of having exceptions lists, which could very quickly grow to be unwieldy 

and require regular vigilant maintenance due to the pace of new applications gaining 

prominence and old ones growing obsolete. It does not help information security postures 
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that consumer electronics is a trending toward the melding of multiple features and 

functions onto a single device. One method of establishing baseline statistics is to develop 

the profile of a normal user; the normal user however becomes more complicated as the 

model requires more flexibility. Smart-phones now feature many additional bands of 

communication like 4G, WIFI, GPS and FM radio to stream video, voice, music and text. 

There are ever increasing operating system options (Android, Linux, Windows Mobile to 

name just a few) that it presently seems near impossible to distinguish what the typical 

profile for a user ought to be. There is a mobile computing security challenge looming on 

the horizon with a clear trade-off between security and convenience. A push in advancing 

AI research will be required as current available approaches will be hard pressed to meet 

those new challenges. In the meantime, human operator training for both administrators 

and users, and adherence to policy continues to remain one of the best defenses against 

cyber malfeasance. Malware authors could become craftier, using delays, time-triggered 

behavior, or command and control mechanisms to try to prevent malicious scripts from 

executing during analysis. These options indeed make it very difficult to detect and 

identify all threats for even the most advanced forms of intelligence, the eye of a seasoned 

human IT professional. 

2.4. Statistical Machine Learning Method Application to IDS 

The following subsections will describe some common Machine Learning 

Algorithms as applied to network anomaly detection. 
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2.4.1. Cluster Analysis 

Unsupervised methods, also called clustering, group unlabeled patterns into 

clusters based on similarities [7]. Patterns within the same clusters are more similar to 

each other than they are to patterns belonging to different clusters. Data clustering is very 

useful when little a priori information about the data is available. Clustering methods can 

be classified into two categories: hierarchical clustering algorithms and partitioned 

clustering algorithms. The degrees of similarity are dependent on the metric selected and 

thus the metric must be chosen with care. For example, for an IDS clustering normal, 

scanning and infected data. The best features to select are those that differ based on the 

presence of malware and suspicious network communication. However, based on how the 

data is collected, it could become corrupted by differences in the network environment 

and host OS and applications. An unsupervised algorithm could latch on to those 

differences which are not pertinent to the goal of the research. Partitioning clusters split a 

data set into a user-defined (either a defined number or based on defined distance 

threshold) set of separate partitions. Hierarchical clusters split the data set into a data 

“tree” that begins with the complete data set and moves down to individual data. 

Clustering is applicable to anomaly and intrusion detection because, in theory, 

‘normal’ events should be more similar to other ‘normal’ events and ‘abnormal" events 

should either be similar to other “abnormal" events or not similar to anything at all [22]. 

Based upon this principle, abnormal events (in other words intrusions and attacks) can be 

defined by anything that does not sufficiently resemble known types or normal events. 

Cluster analysis helps to detect intrusions by sorting actions, packets, files, etc. into 
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groups and then flagging those that are not members of any group or who for a group that 

does not meet a certain size threshold (assuming that normal events are common and 

abnormal ones are rare). Knowledge of the field that clustering is applied to is necessary 

as the human must input the number of clusters, as well as a threshold for separation, as 

well as determine realistic ratios of representative samples seen in real world situations; or 

the danger will be that the clustering algorithm will split groups that should be together 

into neighboring clusters or the opposite scenario could occur as well. 

2.4.1.1. Self Organizing Maps  

SOMs are a method for visualizing data of high dimensionality [59]. The output of 

the algorithm form clusters of similarity. Thus, it can be a way to help analyze data when 

knowledge of how many classifications there should be is not available beforehand. 

One important component of SOM is the weight vectors or “neurons”, these vectors 

contain the input data as well as its location in the lattice space. Then, via a very simple 

algorithm, the neurons compete for which ones best represent the data: 

1. Initialize Map 
2. For i from 0 to 1 
3. Randomly select a sample 
4. Get best matching unit 
5. Update winner and neighbors 
6. Increase i a small amount 
7. End 
 

There are various ways to initialize the weight vectors. One could just assign initial 

weight vectors randomly. Calculating SOMs can be computationally expensive depending 

on the size of the lattice and the dimensionality of data, so there are some methods of 
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initializing the weights such that samples which are known to be different start off far 

away. This can save a significant number of iterations in order to produce a good map. 

The next step is to go through all the weight vectors and calculate the distance 

from each weight to the chosen sample vector. The weight with the shortest Euclidean 

distance is the winner. If there is more than one with the same distance, the winning 

weight is chosen randomly among the weights with the shortest distance.  

Then, update the weight vectors by determining which weights are considered 

neighbors and how much each weight can become more like the sample vector. The 

neighbors of a winning weight can be determined using a number of different methods. 

Some use concentric squares, others hexagons, or a Gaussian function where every point 

with a value above zero is considered a neighbor. 

The amount of neighbors decreases over time. This is done so samples can first 

move to an area where they will probably be, then refine their position. The function used 

to decrease the radius of influence often doesn’t really matter as long as it decreases, so a 

linear function is typical. 

An attribute of this learning process is that the farther away the neighbor is from 

the winning vector, the less it learns. The rate at which the amount a weight can learn 

decreases and is typically a Gaussian function. Then as time progresses, the winning 

weight becomes slightly more like the sample where the maximum value of i decreases. 

The rate at which the amount a weight can learn falls of linearly. 
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2.4.1.2.  Learning Vector Quantization  

The basic LVQ approach is based on a standard trained SOM with input vectors 

and weight vectors [4]. The new factor is that the input data points have associated class 

information. This allows us to use the known classification labels of the inputs to find the 

best classification label for each weight vector. For example, by simply counting up the 

total number of instances of each class for the inputs within each classification cell, a new 

input without a class label can be assigned to the class of the cell it falls within. 

The problem with this is that, in general, it is unlikely that the Voronoi cell 

boundaries will match up with the best possible classification boundaries, so classification 

generalization performance will not be optimized. The obvious solution is to shift the 

Voronoi cell boundaries so they better match the classification boundaries. 

The LVQ algorithm is as follows: 

1. If the input x and the associated weight vector w (i.e. the weight of the winning output 

node) have the same class label, then move them closer together by ∆w = β(t)(x − w) as in 

the SOM algorithm, where β(t) is a learning rate that decreases with the number of 

iterations/epochs of training. This way we get better classification than by SOM alone. 

2. If the input x and associated weight vector w have different class labels, then move them 

apart by ∆w = −β(t)(x − w). 

3. Weights corresponding to other input regions are left unchanged with ∆w = 0. 

 

A second, improved, LVQ algorithm known as LVQ 2.1 is sometimes preferred because it 

comes closer in effect to Bayesian decision theory. 
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The same weight/vector update equations are used as in the standard LVQ, but 

they only get applied under certain conditions, namely when all three below are met: 

1. The input vector x is incorrectly classified by the associated weight vector wI(x). 

2. The next nearest weight vector wS(x) does give the correct classification. 

3. The input vector x is sufficiently close to the decision boundary between wI(x) 

and wS(x). 

 

In this case, both vectors wI(x) and wS(x) are updated (using the incorrect/correct 

classification update equations respectively). Other variations on this theme also exist 

(LVQ3, etc.). 

Hendry and Yang [22] proposed a method of automatic signature creation using 

clustering. Data is run through a clustering algorithm that ideally forms normal and 

anomalous clusters. Those attributes that are shared by members of each anomalous 

cluster can be used as signatures to detect possible intrusions. Upon testing, the algorithm 

was able to correctly identify 70%-80% of malicious clusters as anomalous. Several 

methods of clustering have been applied to the NIDS problem, including Self-Organizing 

Maps [52], Principal Component Analysis [54], Y-means [20] among numerous others. 

2.4.2. Artificial Neural Network Analysis 

The Artificial Neural Network analysis method for intrusion detection assigns 

“weights” to anomalous, perhaps questionable computer usage indicators [11]. As a 

computer performs a series of actions due to a given user command, program, etc., these 
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weights are fine tuned as the computer learns from training on known, labeled suspicious 

or intrusive actions. Each class has its own set of weight combinations and once learned, 

these are used to determine which class a novel sample falls into. If deemed suspicious, 

the process is terminated and the proper action is taken by the detection system. 

The limitations of this technique are related to the size and accuracy of the training 

set. System administrators and managers may perform “questionable” actions on the 

computer during routine maintenance and upgrading and so over time, the algorithm 

slowly can be trained to accept intrusive activities as normal [47], or sometimes otherwise 

known as drift. Radial basis function (RBF) network [63], Boltzmann machine [30], 

Kohonen self-organizing network [52] are just a few examples of ANNs employed in this 

field. 

2.4.3. Non-Stationary Models 

Non-stationary models are best represented by Bayesian probability models [33]. 

Adjustment of probability weightings are based mostly on frequency of occurrence. For 

example, an action that is performed daily or hourly is much more likely to occur at any 

given time than an action that was last performed several months or years previously. 

Early email SPAM prevention algorithms are a prime example of an application [40]. 

In non-stationary models, the probability of an action occurring is defined as the 

inverse of the time since the action was last performed. If an action is performed whose 

probability exceeds a set threshold then that action is labeled intrusive. 
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The main limitation of this system is that there exist legitimate actions that are 

only performed infrequently and a pure probability model is thus insufficient [33]. The 

model does not allow for any form of understanding of the underlying behaviors and 

mechanisms that a system administrator is trying to allow or prevent.  

2.4.4. Heuristic-based Analysis 

Nearly all current commercial antivirus software utilizes heuristic approaches via 

rule-based systems to detect malicious software that does not match an existing signature 

[36]. This means, that the component of the heuristic engine that conducts the analysis 

extracts certain rules from a file and these rules are compared against a set of rule for 

malicious code like a simple event correlator. If a rule matches, an alarm is triggered. A 

heuristic scan checks to determine if a defined series of actions is occurring together 

within a defined window (for example a port sweep) that would indicate that an attack is 

in progress. 

The major drawbacks of heuristic-based analysis are the space requirements for 

storage of the algorithm, the tuning and maintenance to fit the host, and the CPU 

requirements for the scans of the heuristic algorithm [44].  

2.4.5. Entropy-based Analysis 

In entropy-based analysis, intrusions are detected through analysis of the 

uniformity of the data set [50]. As each packet, action, etc. is processed by the detection 

system, the entropy of the data set as a whole is recalculated. If the new packet, action, 

etc. is normal, it should not change the entropy of the data set significantly or even not at 
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all. However, if the new item is anomalous, it should significantly increase the entropy of 

the data set by a proportion relative to the size of the data set (the larger the data set, the 

less a single item will be able to affect its entropy). If an item is found to be anomalous, it 

is marked for proper action and removed from the data set to decrease the total entropy. 

Another option is to keep the data set the same size by removing the oldest item as each 

new normal item is added. This would allow for growth of the data set over time to match 

a user's potentially changing habits. 

The major issues with this approach involve the uniformity of the data set in 

general. If the data set is not chosen to be sufficiently uniform, the entropy of the normal 

items alone will be large enough to mask most intrusions. However, if the data set is too 

well defined, even intrusions may have a low enough entropy to go undetected simply 

because an unimportant or constant value is chosen as the basis for the entropy 

measurements. 

Plattner and Wagner [50] describe a methodology for the detection of large-scale 

scanning worm outbreak using an analysis of the entropy of IP networks. The authors state 

that when a worm outbreak occurs, the entropy of source IP addresses decreases (due to a 

few, infected addresses having a great increase in traffic) while the entropy of destination 

IP addresses increases (due to multiple addresses being scanned by the infected 

computers). Likewise, source port entropy decreases and destination port entropy 

increases, although this is a less reliable measure. The authors measure the entropy of a 

system by using the metric of the size of a compressed object as a value for basing its 

entropy. The authors tested their system with the Blaster and Witty worms and data from a 
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Swiss backbone internet operator and reported favorable results. While this system works 

for fast, large-scale scanning worms, it would work far less effectively for slow and 

stealthy worms. Other applications to network anomaly detection include [32] [29]. 

2.4.6. Genetic Algorithms/Immune-base Analysis 

Immune-based detection algorithms mimic the biological immune system in 

detecting anomalies and intrusions [62]. Artificial immune systems (AISs) break data into 

packets, audit files, etc. into strings of a set length of (usually binary) characters. To detect 

intrusions, an artificial immune system trains detectors through positive or negative 

selection. In positive selection, detectors are trained to only complement normal 

occurrences and everything that does not complement a detector is assumed by the AIS to 

be an intrusion. In negative selection, much like antibodies, detectors are trained to not 

complement normal occurrences and anything that does complement a detector is assumed 

by the AIS to be an intrusion. Detector training requires a dataset of purely normal 

occurrences. The detectors are compared to the data set and any that do not fulfill the 

requirements are removed. Then detectors are tested against a data set of mixed known 

normal and anomalous traffic. The best detectors are preserved and mutated and retested 

until an optimal set of detectors is reached for the data set. Then detectors are deployed to 

detect intrusions in unlabeled data sets, labeling intrusions based upon their 

complementarity to detectors of a certain type (positive or negative selection). In immune-

based detection, complementarity is defined as anything that complements within a set 

margin (or else detectors would have to perfectly complement intrusions or self, which 

reduces this to a signature-based detection technique). 
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The major limitation of immune-based analysis and of many machine learning 

methods is that it requires a clean training data set and a known labeled malicious data set. 

The only known paired data set of this type is the MIT/DARPA IDEVAL data set and that 

data set is rather outdated and known to contain corrupted traces and unrealistic traffic 

conditions. Extensive work in this area can be further found in [38] [53]. 

2.4.7. Data Mining Techniques 

Data mining is an area of research dealing with the extraction of features from a 

data set, that can ultimately be used to define and classify that set and similar sets. This is 

a useful technique in intrusion detection and can be used in both signature-based and 

anomaly-based detection techniques [7]. The data mining techniques mentioned here are 

association rules, frequent episode rules, and classification rules. 

2.4.7.1. Association Rules 

Association rule mining finds interesting associations and/or correlation 

relationships among large set of data items [7]. Association rules show attribute value 

conditions that occur frequently together in a given dataset. Association rules are the 

simplest of the data mining techniques and uses Bayesian Probability formulas. 

Association rules provide information in the form of "if-then" statements. These rules are 

computed from the data and, unlike the if-then rules of logic, association rules are 

probabilistic in nature. The statistical measures related to this rule are “support” which is 

the fraction of the data set that fulfills both sides of the rule (both the first and the second 

events have occurred) and “confidence” which is the probability that the second event will 

happen if the first event has already happened. 
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In a more general sense, all “preventative" intrusion detection is based upon 

application of the association rule. In preventative intrusion detection, the detection 

system examines data for evidence that an intrusion is about to or likely to happen based 

upon past actions of a user or computer that the host is interfacing with. If such evidence 

is found, the detection system decides that an attack is likely and takes appropriate 

measures. 

Wang, et al. [59] describe the development of a worm detection system based on 

detecting anomalous payloads attached to internet packets. The software scans ingress and 

egress packets for anomalies and correlates anomalous ingress packets with anomalous 

egress packets of similar purpose (for example ingress packets that target port 80 and 

egress packets that target port 80). Packet matching is accomplished through a threshold-

based measure of longest common substring or longest common subsequence. In testing, 

the system seems to perform very well (100% detection no false positives), but this was 

only on four different worm samples. Further testing is necessary with a greater variety of 

worms and other anomalous (but benign) packets. 

Yung [62] describes a method of detecting hackers through examination of query 

and response times on computers. Typically, hackers use a chain of machines (Stepping 

Stones such as anonymous proxies) to hide their identity while they work. This creates a 

delay between query and response of the attacker's machine and the eventual target 

machine. The author proposes that such possible attacks can be detected by monitoring 

query and response times for unusual delays. While this method is inexact and prone to 
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error, it’s simple, fast and may be useful in highlighting a possible malicious connection 

for further examination. 

2.4.7.2. Frequent Episode Rules 

Frequent episode rules are an extension of association rules to apply to three 

events rather than two. They state that if two events A and B have already occurred, it is 

likely that an event C will also occur within a set period of time. Once again the statistics 

of support and confidence apply, but also the statistic “window width” which is the 

maximum period of time in which event C is expected to occur after events A and B have 

occurred [7]. Being able to connect sequences of events to each other brings us closer to a 

primitive form of behavior understanding.  

Once again, the major application of frequent episode rules is in statistical analysis 

methods. The use of frequent episode rules would allow a network to more accurately 

predict the next node in a network. For example, copying text and opening a text editor 

would imply that the next action would be to paste the text into the editor. However, 

simply opening a text editor could lead to a general range of actions rather than the 

specific one of pasting text from the clipboard. 

2.4.7.3. Classification Rules 

Clustering is used to sort data into groups based on shared attributes and groups of 

attributes. Then, classification rules describing these clusters, in relation to the inputs, are 

generated. For example, a decision tree can be further developed from the classification 

rules.  
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Kanlayasiri, et al. [26] describe a methodology for detecting whether or not a 

scanning attack is occurring. It checks for a sequence of TCP packets from different ports 

on the same IP address that are more numerous than a given value and occur within a 

given time period. Upon testing, the authors found that this technique works perfectly on 

light, moderate, and heavy load on a given bandwidth. 

Duffield, P. Haffner, et al. [9] constructed rules at the flow level that accurately 

reproduce the action of packet-level rules. An exhaustive system for translating packet 

rules into flow rules must leverage the correlations between the packet payload and flow 

header in order to mitigate the impact of losing payload information. The model and 

classification for packet rules is as follows: A packet rule is specified by a set of 

predicates that are combined through logical AND and OR operations; there are three 

types of predicate: flow-header (FH), packet payload (PP), and meta-information (MI) 

predicates. To train the machine learning algorithms, it is desired that concurrent flow and 

packet traces alert the same ones that Snort raises on these packets. 

Adaboost is the ML algorithm this paper settles upon, it uses an L1 linear measure 

of simplicity that encourages sparsity, a property that is well matched to the aim of finding 

a small number of predicates that are closely related to the packet level rules. The data 

was gathered at a gateway serving hundreds of users during August–September 2005. All 

traffic traversing an OC-3 link attached to a border router was gathered via an optical 

splitter. A standard Linux box performed the role of a monitor reading packets via a DAG 

card. Results indicate Adaboost is able to correctly interpret (as opposed to merely mimic) 

many header rules by prioritizing the proper fields: the destination port, which encodes the 
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ICMP code and type fields, is essential to each of the ICMP rules. Predicates that require 

access to packet payload information, on the other hand, cannot be reproduced in a flow 

setting whatsoever. For payload rules to be learned in a flow setting, therefore, the 

corresponding flow classifier must rely on some combination of other predicates of the 

original Snort rule, and entirely new predicates constructed by the machine learning 

algorithm to describe the packets/flows matching these rules. The experiment also 

discovered that data drift was largely absent at a timescale of two weeks, far longer than 

the few minutes required for learning. Measuring how performance drifts over time is 

critical, as it determines how often retraining should be applied. 

The advantage of the approach is that the computation complexity remains feasible 

at the network scale. However, the limitation here is that packet headers can be easily 

spoofed. If this approach indeed becomes an industry standard, it would not be hard for 

intruders to insert intentionally erroneous header data in order to mask more nefarious 

payload. 

2.5. Thesis Methodology 

This thesis approaches the problem of malicious activity identification by first 

breaking the state of the host into three categories: Normal, Scanning, and Infected. 

Normal is when the host is surfing the world wide net and though it may encounter bad 

packets, it is not being specifically targeted and all defenses are up, meaning the antivirus 

is operational. Scanning is data collected from the CDX exercise when the NSA was 

actively scanning for vulnerabilities and trying exploits that could reveal additional 

vulnerabilities; however, targeted servers are still up and operational. Infected is the state 
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of the host when a Trojan has been downloaded and confirmed by the antivirus program to 

have replicated itself into the file system. The host features were extracted and put into a 

CSV file using text mining tools available in Weka from text files derived of the following 

SysInternals tools polling in 15 second intervals: DLLs, Handles, LogonSessions, Netstat, 

Processes, PsInfo and Services. The CSV file about the network data, captured by 

Wireshark as PCAP files, was derived using an in-house updated version of Andrew 

Moore’s Fullstats packet feature generator on those PCAPs, more details of which are in 

Chapter 4. The two files were then manually integrated by MS Excel. The final CSV file 

was tested and trained using a randomly proportioned 20% for training and 80% for 

testing purposes. The algorithm used was Weka SMO, which is a version of Support 

Vector Machine, and the reason it was chosen is briefly discussed below and further 

expounded upon in Chapter 4.  

The intermediate step in this endeavor was to identify which machine learning 

algorithm would be used on the collected host and network data to classify them into the 

prescribed categories above. The three that were ultimately chosen to test were: Self 

Organizing Maps, Learning Vector Quantization and Support Vector Machines, which via 

experimentation was determined to be the best at classification. The data set used to test 

the performance of these algorithms were those by Dr Andrew Moore of Cambridge 

which can be found at the url: 

http://www.cl.cam.ac.uk/research/srg/netos/nprobe/data/papers/sigmetrics/  

More details about the Moore set is available in Chapter 4. This was done because 

those sets were much smaller than the collected combination of host/network data 
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collected from this project and most appropriate for the aim of finding the best performing 

algorithm for the real data. 

2.6. Summary 

This chapter has presented a compilation of the background information relating to 

the problem of malicious activity identification either using host or network data. It is 

meant to reduce the possibility of replicating work that has already been done. Chapter 3 

builds on Erskine’s use of only 6 network features, replacing it with Moore’s 248; it also 

takes the idea of data mining for intrusion detection from Julisch [25] by using text mining 

techniques on host data, and expands upon Moore’s use of network data for application 

identification for use in identification of malicious attacks. Finally, Chapter 3 also 

provides further details on the host/network combination in regards to this particular 

research project. 
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III. Methodology 

This chapter describes the research methodology used to evaluate of the first ever 

attempt at hybridizing the network and host feature data, applying a machine learning 

algorithm to detect network attack stages. The processed data obtained by Windows 

SysInternals tools [51] and Fullstats Packet Feature Generator [41] was run through the 

machine learning Weka suite, taking advantage of its support vector machine algorithm to 

classify and test effectiveness. First, the data collection process is detailed, which is 

followed by a description of how the collected data was formatted into CSV format and in 

the case of SysInternals text files, filtered for the most frequent string n-grams. Finally, 

Weka’s role in analyzing the preprocessed data is explained. Results of the analysis are 

presented in Chapter 4. 

3.1. Data Acquisition  

The following subsections describe the process of data collection, the types of data 

and their significance. 

3.1.1. Host Settings 

Due to the difficulties in acquiring good data as touched upon in Chapters 1 and 2, 

the data collected from the Cyber Defense Exercise was deemed insufficient to represent 

the three classes being discriminated between: Normal (normal user activity), Scanning 

(malicious targeted scanning), and Infected (Trojan/Worm infestation). The purpose of 

CDX was unfortunately not aligned with the purpose of requisite data for this research. 

The majority of teams involved in CDX achieved their goal of keeping their services up, 
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playing active defense against a continuous cyber assault throughout the three and a half 

day exercise. This however, ran counter to the goal of collecting a good representative 

sample that consisted of normal activity, scanning activity, attempted exploit activity, and 

successful infection. In the end, the data from CDX was determined to be representative of 

scanning activity and attempted exploit only. Furthermore, since NSA did not release their 

exact activities, these two activities were combined into one category that should describe 

activity representative of a targeted network that hackers are purposefully scanning, trying 

to find vulnerabilities. The CDX data for the scanning category used in the final analysis 

was from the network DNS server running Windows 2003 server. A more detailed 

explanation of the requirements and difficulties in CDX data collection and 

recommendations is available in Appendix B. 

Because of the lack of data gathered for the categories of Normal and Infected 

were separately obtained using a Dell Latitude D630 with Intel Centrino Duo running an 

up to date version of Windows Vista connected via a modem to the internet, a simple 

scenario that is universal for nearly all internet users at some point. The table below 

summarizes the applications running and tools for data collection. The final virus scan 

using AVG confirmed that a Trojan had planted itself in two file locations. 

• Activity/ Category: Normal 
o Host Operating System: Windows Vista Service Pack 2 

 
o Applications: Windows Media Player in continuous MP3 loop, Microsoft 

Internet Explorer 8.0 running automatic page refresh in 2 minute intervals 
using www.lazywebtools.co.uk/cycler.html, AVG antivirus patched and 
fully running 
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o Data Collection Tools (sensors): Always on: Wireshark, Snort IDS with 
standard rule set; 15 minute intervals: Win32dd memory capture; 1 minute 
intervals: C:\WINDOWS\System32\drivers\etc\services; SysInternals: 
Listdlls, LogonSessions, Handle, Pslist, NetStat; Once per logon: PsInfo 

 

• Activity/ Category: Infected 
o Host Operating System: Windows Vista Service Pack 2 

 
o Applications: Windows Media Player in continuous MP3 loop, Microsoft 

Internet Explorer 8.0 running automatic page refresh in 2 minute intervals 
using www.lazywebtools.co.uk/cycler.html, AVG anti-virus Resident 
Shield off 
 

o Data Collection Tools (sensors): Always on: Wireshark, Snort IDS with 
standard rule set; 15 minute intervals: Win32dd memory capture; 1 minute 
intervals: C:\WINDOWS\System32\drivers\etc\services; SysInternals: 
Listdlls, LogonSessions, Handle, Pslist, NetStat; Once per logon: PsInfo 

 

Infection Mechanism Went down the list of IPs on 

http://www.malwaredomainlist.com/mdl.php until an active malicious website was 

located. When located, the browser safety page was triggered and AVG confirmed block 

of attempted download of malicious script. Then, confirmed proceed anyway in browser, 

AVG blocking was turned off and web page was refreshed to successfully download 

malicious code into host. 

3.1.2. Sensors Selection 

The following subsections describe the sensors used to collect raw data. 

3.1.2.1. Classes of Data Sets  

To capture forensic evidence to give the bigger picture, two types of sensors are 

used: transactional sensors and snapshot sensors. Transactional sensors capture each 
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transaction within the sensor’s monitoring realm. Transactional sensors continuously 

capture data until they are halted, or until some user-defined rule is met (such as time limit 

or file size thresholds). An example of this type of sensor is Wireshark [44], a popular 

sniffer also used by Erskine to monitor a network device for inbound and outbound 

network packets and save the entire session into a PCAP file for later analysis. Another 

transactional sensor is Snort, which logs suspicious network activity in real time. Snapshot 

sensors capture, and provide raw or summary data about a subset of features that can be 

used to describe the current system state or configuration. An example of a snapshot 

sensor is SysInternal’s pslist.exe [51], which displays a snapshot of process in execution 

and processor utilization. System events which start and stop between snapshots, in this 

case, within 15 seconds, may make no imprint on a snapshot sensor. 

The purpose of the normal collection is to generate a set of data which consists 

only of typical user activity in a real environment. Since I am surfing the real Internet to 

collect this data, it’s highly probable that exploits and scanning are being attempted but 

that the antivirus is preventing any form of compromise and the user is not noticing any 

anomalous behaviors. It should be pointed out that the important difference is that in the 

CDX environment, the scanning is much more aggressive and purposeful because the 

network was specifically being targeted, with the IP ranges known to the perpetrator. 

During this collection, the settings summarized in the two tables above, the host runs 

Windows media player, Internet Explorer and AVG antivirus with Resident Shield on, 

which protects it from downloading and becoming infected by malicious scripts. The data 
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set generated is used to provide a baseline forensic data set to compare with the scanning 

and infected collections. 

The purpose of the scanning collection is to generate a set of data which consists 

of scanning and service enumeration events, searching for vulnerabilities in different 

versions of the services like telnet, ssh, http, etc. The scanning collection consists of ping, 

Nessus, Nmap and other similar activities NSA may have attempted on the various IP 

addresses and ports on the CDX network. The data set generated is used to provide 

information to contribute to the model that would eventually recognize early stage 

malicious activity and provide more accurate warnings than Snort, which reports all pings 

as alerts whether or not it may have only been an innocent check for connectivity.  

The purpose of the infected collection is to generate a set of data which consists of 

data collected from a host infected with a trojan which should theoretically contain 

features that distinguish it from either normal or scanning, such as if the trojan is running 

extraneous processes or changing the volume of network traffic. 

http://www.malwaredomainlist.com/mdl.php contains a list of known malicious IP 

addresses, some of which are active, and some of which have been disabled by the 

webhosts. The host computer visited these IP’s until an active malicious website was 

located. When located, the browser safety page was triggered and AVG confirmed the 

block of an attempted download of malicious script. Then, the host confirmed to proceed 

in the browser, AVG blocking was turned off and web page was refreshed to successfully 

download malicious code into host. Data was collected and a scan was performed at the 
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end to confirm the computer was indeed infected. The data set generated is used to 

provide a representative sample of forensic evidence generated by a trojan infection. 

Each dataset consists of outputs from the seven sensors: services.exe; SysInternals: 

Listdlls, LogonSessions, Handle, Pslist, NetStat; PsInfo described in detail in Section 

3.1.2, which generated thousands of files to parse. Weka was used to create a text ARFF 

format file using the command line “java -classpath ./weka.jar 

weka.core.converters.TextDirectoryLoader -dir ./testing/ > testing1.arff” This was 

immediately re-saved as a CSV file. Then the explorer application was used to open the 

newly generated CSV file and a filter was used to convert the text CSV file into word 

vector CSV files. This filter is called StringToWordVector and is located under the 

unsupervised, attribute folder. StringToWordVector is necessary because the Weka 

Support Vector Machine classifier only works with numeric values. StringToWordVector 

converts String attributes into a set of attributes representing word occurrence information 

from the text contained in the strings. The set of words (attributes) is determined by the 

first batch filtered (typically training data). The option for TF/IDF, Term 

Frequency/Inverse Document Frequency, was selected and stemming was not done. This 

converts the documents into vectors of numbers for later classification.  

A separate feature CSV file was generated from the packet capture by Wireshark 

using a perl script originated by [41] Andrew Moore of Cambridge University, 

fullstat.v1.0.tgz (http://www.cl.cam.ac.uk/research/srg/netos/brasil/downloads/index. 

html). This script runs under Ubuntu 5.10 “Breezy Badger” and requires, due to 

deprecated functions, the installation of several additional older packages such as gcc 
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4.0.1-3, perl 5.8.7-5, tcpdump 3.9.1-1, the following are listed separately in the Fullstats 

readme but are part of tcpdump: tcpdemux, tcptrace, , tcpslice, etc. Breezy Badger’s 

update repositories have all been closed due to the age of the OS version but should still 

be available for manual install using SourceForge. Appendix A summarizes the extracted 

features. Some of the features are correlated, in other words, not all are independent.  

Finally, these two CSV files are manually concatenated; data that could not be 

matched was discarded so that each set of host data was matched to one set of network 

data. The combined file was then trained and tested using a random 20% for training and 

the remaining 80% for testing to determine the separability of the data for the three classes 

Normal, Scanning and Infected. 

3.1.2.2. Details of the Snapshot Sensors 

Snapshot Sensors give information about the state at the moment the data is 

gathered. The snapshot sensors used in data collection include Pslist, ListDLLs, 

logonsessions, Handle, PsInfo, NetStat and looks at the services file under 

C:\WINDOWS\system32\drivers\etc\services; this file contains port numbers for well 

known services defined by IANA, Internet Assigned Numbers Authority. 

Process Overview Sensor 

In order to capture summary process data, such as memory utilization, user and 

system time, number of threads and handles, SysInternals’ pslist.exe program is used. 

Running this tool from the command line provides process ID, process name, user time 

and kernel time, sizes of Virtual Memory, Working Set, Private Virtual Memory, Private 
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Virtual Memory Peak and Page Faults. This tool is categorized as an example of a 

snapshot sensor. A snapshot is obtained every minute; the data is output to a text file from 

a .bat script. While pslist.exe is used in digital forensics research, little to no literature has 

been presented which analyzes the output using textual data mining methods in order to 

farm for features to use in classification. The attributes identified are thus strings or n-

grams that are identified by frequency and as a downside, also subject to variation based 

on how the tool is formatting the output. 

Process DLLs Sensor  

To help with the mapping of processes, and to which dynamic-linked libraries 

(DLL) a process is associated with. SysInternals’ ListDLLs.exe was scripted to take a 

“reading” every minute. This tool is another snapshot sensor. ListDLLs shows the full 

path names of a processes loaded modules - not just their base names. The output of this 

tool was sent to a text file which was later categorized into one of the three classes and 

textually mined along with the other SysInternals’ tools’ data collection. 

Process to Session Sensor   

To monitor the users who are logged on at a point in time and what processes were 

started by those users, SysInternals’ logonsessions.exe program is used. It lists the 

currently active logon sessions and, if you specify the -p option, it reveals the processes 

running in each session. This is primarily useful in discovering unauthorized users that 

have gained access via a backdoor and are performing suspicious system calls. 

Process to Handle Sensor 
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Handle.Exe is a utility that displays information about open handles for any 

process in the system. You can use it to see the programs that have a file open, or to see 

the object types and names of all the handles of a program. There is also a GUI-based 

version of this program, called Process Explorer at Sysinternals. If you do not specify any 

command-line parameters it will list the values of all the handles in the system that refers 

to open files and the names of the files. This is the information that was outputted to the 

text file to be analyzed in this research. 

Windows OS and Hardware Sensor 

PsInfo.exe is a command-line tool that gathers key information about the local or 

remote Windows NT/2000 system, including the type of installation, kernel build, 

registered organization and owner, number of processors and their type, amount of 

physical memory, the install date of the system, and if it’s a trial version, the expiration 

date. 

TCP / UDP connections Sensor 

NetStat.exe displays active TCP connections, ports on which the computer is 

listening and their associated PID, Ethernet statistics, the IP routing table, IPv4 statistics 

(for the IP, ICMP, TCP, and UDP protocols), and IPv6 statistics (for the IPv6, ICMPv6, 

TCP over IPv6, and UDP over IPv6 protocols). Used without parameters, netstat displays 

active TCP connections. The output is saved as a text file and categorized into one of the 

three classes and mined for textual attributes. 

CMAT Memory Dump Sensor 
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CMAT is a memory dump analyzer that works in nearly all versions of Windows 

[46]. It can output much of the information obtained via the SysInternals snapshot tools 

after the fact by parsing memory dumps, which were collected using Mathieu Suiche’s 

win32dd/win64dd [56]. The information outputted includes Process Identification 

numbers (PIDs), applications, users, Dynamic Linked Libraries (DLL)s, mapped address 

spaces and registry keys information. For this research, this tool was tested but the time 

needed to analyze all the memory dumps was prohibitive, so due to the limitation of 

getting a large enough sample size, this source was omitted. In practical terms, volatile 

memory parsing and data gather is a large field of cyber forensics in and of itself. 

3.1.2.3. Network Packet Sensor 

To capture network packets being sent to the host system, WireShark, a popular 

sniffer, is used. All traffic captured over a three to four hour window was run thru the 

packet Moore’s Fullstats feature generator. The protocols evaluated include all TCP, UDP, 

ICMP, and ARP traffic. Relevant fields captured are listed in Appendix A. There are a 

number of digital forensics research efforts which utilize packet capture files as reviewed 

in Chapter 2. The features and methodologies vary from signature detection to anomaly 

detection, but Haag [21] and Gonzalez [15] both focus on the elements found within 

packet header-level metrics. This research is novel in that it combines the textual features 

generated by the host sensors with the features generated by the packet flow generator to 

determine whether performance can be improved by the added information gain each gets 

from the other. The “Network packet sensor” features generated by the Full Stat ARFF 

creator containing the complete set of features is in Appendix A. 
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3.2. Data Preprocessing and CSV file generation 

3.2.1. Text files 

To ready the data for Weka analysis, it must first be converted to a CSV or ARFF 

file format. CSV was ultimately chosen because it is easily edited in MS Excel. To create 

the preliminary text ARFF, three empty folders are made and named with their 

classification name, Normal, Scanning, and Infected. Then those folders are populated 

with all the text files generated by the snapshot tools, each in their respective folder.  

Then, the Weka Text Directory Loader command line application is used which 

transforms a directory of files into an ARFF file. The resultant ARFF file is saved as a 

CSV after conversion into a string vector. Since most classifiers in Weka cannot handle 

String attributes, for these learning schemes one has to process the data with appropriate 

filters, e.g., the StringToWordVector filter which performs a Term Frequency/Inverse 

Document Frequency (TF/IDF) transformation. [61] TF/IDF is a weight used in 

information retrieval and text mining. This weight is a statistical measure used to evaluate 

how important a word is to a document in a collection or corpus. The importance increases 

proportionally to the number of times a word appears in the document but is offset by the 

frequency of the word in the corpus. Variations of the TF/IDF weighting scheme are often 

used by search engines as a central tool in scoring and ranking a document's relevance 

given a user query. One of the simplest ranking functions is computed by summing the 

TF/IDF for each query term; many more sophisticated ranking functions are variants of 

this simple model.  
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3.2.2. Network IP Packets (PCAP) ARFF Generation 

The Fullstats Attributes Generator [26] is used to create the full 266 features as for 

Traffic Classification. Its output is reduced to 248 features due to the discarding of 

confidential information from the flows, such as IP addresses in both directions, Port 

Information etc.  

1) Firstly you need to create a list which contains the PCAP dump files. This is 

then passed to the flowCreator to reassemble the flows and outputs a filelist and also 

outputs a directory containing the reassembled flows. 

 perl flowCreator.pl dumplist 

2) Then the filelist created by flowCreator is passed to the attributeGenerator to 

calculate the features. This outputs several files that contain a prefix. 

 perl attributeGenerator.pl filelist 

3) Finally arffCreator is used to create the ARFF file by appending all the relevant 

features from each file created by the attributeGenerator. This outputs two ARFF and two 

CSV files: awmreduced and allclass. 

 bash arffCreator2.sh output_11........_ 

The arffCreator requires you to provide the prefix of the files. It also uses two 

additional header files to append the Weka headers to the results. 
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3.2.3. CSV concatenation 

The two CSV files, one from the word vector CSV consisting of the host snapshot 

features and one from Fullstats, consisting of network features, which are further detailed 

in Chapter 4, are merged in MS Excel. The Fullstats generated data is unlabeled so it is up 

to the user to label these before merging In this situation, data was easily labeled since 

they were collected at different times, in scenarios specifically setup up for each class. 

Normal was when the Vista was online with AVG running. Infected was with a trojan 

downloaded and AVG off and Scanning was collected during CDX.   The user must also 

try to closely match the time stamps of the host data and network data during the merged 

CSV generation process. A host dataset with a timestamp (which is the name of the text 

file) is matched to a set of network data estimated to be around the same time. There is a 

large margin of error on the order of three hours given the time asynchronization of CDX. 

Also the timestamp is largely lost once processed by Fullstats so the window of selection 

is done to the packets prior to this processing. Once the same number of samples of 

network data is approximately matched to samples of host data, the basic merge consists 

of expanding the number of features for the class label such that the features now include 

both host and network derived features.  

Any of the various numeric Weka classifiers can be used on this CSV file to 

determine if the fused host-network set of generated features improves separability over 

host or network alone. 
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3.3. Weka SMO classifier Training and Testing 

Weka’s Support Vector Machine (SVM) implementation is name SMO. SVMs are 

one of the more advanced and accurate methods of data classification, however like many 

computational challenges, it is a trade-off of accuracy for speed [37]. SVMs are not yet 

primed for real time applications, especially for the high volume task of network and host 

data analysis. A general explanation of the theory is presented in this section. 

The general idea behind SVMs [18] is that the original feature input space which is 

difficult to separate can be mapped to a higher-dimensional feature space where the 

training set becomes more easily separable. With this mapping, the discriminant function 

is now: 

      (1) 

There is really no need to know this mapping explicitly, because we only use the 

dot product of feature vectors in both the training and test. Thus, a kernel function is 

defined that corresponds to a dot product of two feature vectors which maps the samples 

into an expanded feature space. For example, a linear kernel function is: 

      (2) 

Some other commonly used kernels are polynomial, Gaussian and sigmoid [18]. 

Unfortunately the selection of the best kernel is a trial and error process [18].  

To solve for the optimal hyperplane in the linearly separable case, Lagrangian 

multipliers are introduced: (Lagrangian Dual Problem) 
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      (3) 

Such that                   and  

The solution of the discriminant function is 

      (4) 

 

The optimization technique then is the same as for the large margin classifier. The 

solution has the form: 

      (5) 

                                                                                   . 

 

The basic SVM algorithm is as follows: 

1. Choose a kernel function 
2. Choose a value for C 
3. Solve the quadratic programming problem (many 

software packages available) 
4. Construct the discriminant function from the support 

vectors  
 

Multiclass SVM aims to assign labels to instances by using support vector 

machines, where the labels are drawn from a finite set of several elements. The 

dominating approach for doing so is to reduce the single multiclass problem into multiple 

binary classification problems. Each of the problems yields a binary classifier, which is 
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assumed to produce an output function that gives relatively large values for examples 

from the positive class and relatively small values for examples belonging to the negative 

class. Two common methods to build such binary classifiers are where each classifier 

distinguishes between (i) one of the labels to the rest (one-versus-all) or (ii) between every 

pair of classes (one-versus-one). Classification of new instances for one-versus-all case is 

done by a winner-takes-all strategy, in which the classifier with the highest output 

function assigns the class (it is important that the output functions be calibrated to produce 

comparable scores). For the one-versus-one approach, classification is done by a max-

wins voting strategy, in which every classifier assigns the instance to one of the two 

classes, then the vote for the assigned class is increased by one vote, and finally the class 

with most votes determines the instance classification. 

3.4. Disadvantages of the Selected Research Methodology 

There is a great disadvantage in the idea behind using text mining techniques to 

analyze the snapshot output from a host computer. Specifically, the text processing masks 

the need to truly understand the behavior of the processes running at the different stages of 

attack. Another major disadvantage is that it is superficial and highly dependent on the 

sensor tools and the format in which they output the requested data. The authors of the 

utilities may come out with a new version that provides an additional layer or column, or 

takes one away. This will change the frequencies of text and word vectors dramatically 

even though nothing really has changed “under the hood.” This requires retraining 

whereas a model that is based on behavior [19] is not as easily affected by such a trivial 

difference. Finally, it adds a level of complexity by having what some may deem as too 
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many attributes/features, numbering in the thousands, because it must count each word 

string as an attribute . That diminishes the optimal information gain obtained from having 

essentially an internal and external monitor to verify what each is “seeing” on their end.  

The one clear advantage of this method is that it closely mimics how people and 

human systems administrators deal with this data, and that is they mostly read the lists of 

processes, files and timestamps and then combine that information in broad 

generalization. They draw conclusions based on a general correlations of this information 

in their heads, unlike more common research proposals in the field of attack identification 

which is to try to only pick the fewest most information rich features and try to make a 

determination from those. This approach is often blindsided by the creativity of human 

hackers, who find new ways of infiltration rendering the selection of only those few 

features that worked in the past history to be easily thwarted when faced with fresh 

challenges.  

The other topic of disadvantage is that being the hardships of obtaining good 

representative data. Because the data from the scanning was procured from a system on a 

simulated internal network with different OSs and running different applications, it should 

be no surprise that it easily classifies accurately into its own class. Data obtained while 

connected to the actual internet such as those collected for the normal and infected classes 

will have much greater overlap and should provide more useful insight into realistic 

network and host behavior. 
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3.5. Summary 

The host and network data fusion and SVM classification approach is meant to 

provide results that validate a proof of concept. That using fused network/host data for a 

holistic collection of features performs better than the host or network features alone. All 

this is moving towards the goal of more accurate classification of different stages of 

network attacks as to be compared with the performances of Snort IDS, pure host side data 

and pure network side data. An understanding of research goals and hypothesis, a 

description of the data collection and test environments, and a description of the 

experiments along with assumptions and limitations, has been provided for anyone 

intending to duplicate the results of this study or to re-use certain parts for future work. 

The results of the Weka analysis can be found in Chapter 4. 
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IV. Experimental Results and Analysis 

This chapter discusses the experimental design, and results of from testing the 

hybrid intrusion detection system. The experimental design covers the data sets and 

parameters for implementing the experiments. The Moore dataset labeled entry 02, entry 

04, entry 08 and entry 09 were used to test the Machine Learning algorithms in Weka, 

entry 04 and 08 were used as the training/model building sets and entry 02 and 09 were 

used as their respective testing sets. Since the results showed similar trends, only the entry 

02/04 experimental pair results are presented. The Moore dataset is used to perform a 

comparison test of the Self Organizing Map (SOM), Learning Vector Quantization 

(LVQ), and Support Vector Machine (SMO) classifiers which results in the Weka SMO as 

the chosen classifier for final testing. Testing the Weka SMO classifier on the CDX/Vista  

provided a comparison between pure HIDS (Host data set prior to merging features) and 

NIDS (Network data set prior to merge) with that of one form of the hybrid IDS and 

discusses the observed performance metrics. Lastly, the summary presents the results in 

context and offers a fuller perspective of where things stand. 

4.1. The Moore Network Traffic Data Set and IP Feature Extractor 

Moore’s data set contains one day of authentic network traffic that was classified 

by the type of traffic, day1.TCP.arff.gz (12 classes, shown in Table 4.1) [41] [42]. The 

flows labeled as cyber attacks are identified by known signatures, and consist 

predominantly of worms and viruses. A table of the features contained in the data set from 

[43] appears in Appendix A. The data set provides a look into a real world application of 
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the feature selection problem since it is extracted from a day of network traffic and has 

already been processed for metrics and statistics.  

The Moore data set contains 377,526 samples of network flows, 248 features, and 

12 classes, whose features include nominal, discrete, continuous, missing and noisy 

values. The samples of the data are restricted to bidirectional Transmission Control 

Protocol (TCP) flows. A portion of the data set is employed for this work since the 

original Moore data set consists of too many network flows to handle in a reasonable 

amount of time and the researcher encountered unrecoverable heap space issues with the 

full Moore data set. The reduced data set consists of 40,858 flows out of the 377,526 

flows. A majority of the flows consist of email and World Wide Web traffic and so these 

classes have been reduced to preserve a more equivalent ratio with respect to the other 

classes. The games class was removed because there were only 8 instances, and due to 

restrictions should not appear in enterprise network traffic. The composition by class of 

the original and reduced data set is shown in Table 4.1. 

The features consist of protocol parameters, network performance, transmission 

volume, and size. The features describe many flow characteristics extracted from the 

network traffic. Protocol parameters include information taken directly from packet-level 

headers. Performance pertains to a combination of features that are affected by flow and 

network dynamics (e.g., throughput). Volume includes the quantity of certain 

distinguishing packet traits. Size encompasses features that describe the flows in terms of 

bytes. Table 4.2 provides several examples of features by category. The features describe 

host to host sub flows and aggregate bidirectional statistics and metrics. Specifically, the 
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features include quartile, min, max, average, and median statistics. The data set feature 

values are binary, whole and real numbers. Additionally, nearly a third of the values for 

some features are missing data. 

Table 4.1: Moore dataset - Number of Instances in each Class [41]. 

Class Original Data Set Reduced Data Set 
Games  
Interactive 
Multimedia 
Attack 
Peer-to-peer 
Services 
Database 
File Transfer Protocol-passive 
File Transfer Protocol-control 
File Transfer Protocol-data 
Mail 
World Wide Web 

8 
110 
576 
1,793 
2,094 
2,099 
2,648 
2,688 
 
3,054 
 
5,797 
28,567 
328,092 

0 
110 
576 
1,793 
2,094 
2,099 
2,648 
2,688 
 
3,054 
 
5,797 
9,999 
10,000 

Total 377,526 40,858 
 

Table 4.2: Fullstats Feature Generation Example Features by Category. 

Protocol Parameters Performance Volume Size 
 

stream length 
 
average window size 
 
request for max 
segment size 

inter-arrival time 
 
throughput 
 
round trip time 

number of out-of-order 
packets 
number of 
acknowledgment 
packets 
number of 
retransmissions 

average packet size 
 
total bytes sent 
 
amount of control 
bytes set 
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The data set presents a complex domain with high dimensionality, varied 

correlation, multiple feature types and missing values. Analysis of the data sets shows that 

some features are redundant and/or uninformative for the classification task. Pearson’s 

correlation coefficient is widely used in the sciences as a measure of the strength of linear 

dependence between two variables. Utilizing Pearson’s correlation coefficient as a 

measure of the correlation (linear dependence) between two variables X and Y, giving a 

value between +1 and −1 inclusive [23] on the feature pairs as indicated in Table 4.3 show 

a linear association indicated by |r| = 1. Of the pairings, only a single member of a pair 

would need to be assessed for feature selection. Additionally, the data set contains features 

with no utility since all their values are zero or missing. 

Table 4.3: Pairs of Features with Perfect Correlation. 

Index A Feature A Index B Feature B 

6 mean IAT 198 mean IAT a b 

6 mean IAT 205 mean IAT b a 

198 mean IAT a b 205 mean IAT b a  

7 q3 IAT 199 q3 IAT a b 

7 q3 IAT 206 q3 IAT b a 

199 q3 IAT a b 206 q3 IAT b a 

217 Effective Bandwidth a 
b 

218 Effective Bandwidth b 
a 
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Table 4.4: Uninformative Features. 

Index Feature 

76 urgent data pkts b a 

78 urgent data bytes b a 

103 truncated data a b 

104 truncated data b a 

106 truncated packets b a 

219 FFT all Frequency # 1 

229 FFT a b Frequency # 1 

239 FFT b a Frequency # 1 

 

Uninformative features are noted in Table 4.4 and may also be removed but were 

left for completeness. Many other pairs of features contain extremely high correlations in 

excess of 0.99. For the 248 features, there are 30,628 possible combinations of pairings, of 

which there are 74 pairings with correlations greater than 0.99, and 326 with correlations 

greater than 0.90.  

4.2. Determining the Machine Learning Algorithm 

This section gives the investigation that was done to determine the best classifier 

to be used on the CDX and Vista network data using the Moore network dataset [42]. 

There are 11 sets total, entry 04 and entry 08 was used as the basis for building the SOM, 

LVQ 2.1/3 and SVM classifier models in Weka. Entries 02 and 09 were used as test sets 

to produce the results to follow. These entries were selected because they represented a 

smaller dataset (02 and 04) and a larger dataset (08 and 09) since one of the findings by 
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Kim [27] was that data set size played a significant role in classification accuracy. It 

compares the performance of Self Organizing Maps (SOM), Learning Vector 

Quantization (LVQ) version 2.1/3 and Support Vector Machines (SVM) on Andrew 

Moore’s data set, an overview of how these algorithms work is generalized here.  

4.2.1. Self Organizing Maps  

The SOM parameters were the default settings in Weka using the version 

downloaded [31] from http://wekaclassalgos.sourceforge.net/, and the reduced data set 

was used as described in Table 4.1.  

Table 4.5: Graphical User Interface Parameters. 

Parameter Value 
Debug FALSE 
Initialization Mode Random Training Data Proportional 
Learning Function Linear Decay 
Learning Rate 0.3 
Map Height 6 
Map Width 8 
Neighborhood Function Gaussian 
Neighborhood Size 8 
Seed 1 
Supervised FALSE 
Topology Hexagonal 
Training Iterations 1440 
Use Voting FALSE 

 

Of importance in the Self Organizing Map experiment was that the false positive 

rate for the largest class WWW (web browsing traffic) was very high, at 73-93% testing 

the model on various data sets, a typical example confusion matrix is displayed in Table 

4.6. Also, the size of the data set used to create the model that corresponded with the test 
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set of similar size generally led to better classification accuracy and this was also true of 

the other algorithms. Table 4.6 illustrates the confusion matrix test result of classifying 

entry 09 network packet flows, using the SOM model generated by training on entry 04 of 

the Moore data set. 

Table 4.6: entry 09 confusion matrix of SOM model generated by entry 04. 
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36 

365
8 65 1412 361 

19
9 15 90 0 337 29 3 WWW 

0 0 0 0 0 0 0 0 0 0 0 0 MAIL 

0 0 0 0 0 0 0 0 0 0 0 0 
FTP-
CONTROL 

0 0 0 0 0 0 0 0 0 0 0 0 FTP-PASV 

0 0 0 0 0 0 0 0 0 0 0 0 ATTACK 

0 0 0 0 0 0 0 0 0 0 0 0 P2P 

0 0 0 0 0 0 0 0 0 0 0 0 
DATABAS
E 

0 0 0 0 0 0 0 0 0 0 0 0 
FTP-
DATA 

57 20 10 0 6 50 0 0 0 0 0 0 
MULTIME
DIA 

0 0 0 0 0 0 0 0 0 0 0 0 SERVICES 

0 0 0 0 0 0 0 0 0 0 0 0 
INTERAC
TIVE 

0 0 0 0 0 0 0 0 0 0 0 0 GAMES 

 

4.2.2. Learning Vector Quantization  

The LVQ version 2.1 and 3 parameters were the default settings in Weka using the 

reduced data set as described in Table 4.1.  

Table 4.7: Graphical User Interface Parameters LVQ 2.1. 

Parameter Value 
Debug False 
Initialization Mode Random Training Data Proportional 
Learning Function  Linear Decay 
Learning Rate  0.3 
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Seed   1 
Total Codebook Vectors 20 
Total Training Iterations 1000 
Use Voting   False 
Window Size  0.3 

 

Table 4.8: Graphical User Interface Parameters LVQ 3. 

Parameter Value 
Debug False 
Epsilon  0.1 
Initialization Mode Random Training Data Proportional 
Learning Function  Linear Decay 
Learning Rate  0.3 
Seed   1 
Total Codebook Vectors 20 
Total Training Iterations 1000 
Use Voting   False 
Window Size  0.3 

 

Of importance about the LVQ experimental results was that LVQ 3 performed 

much better than LVQ 2.1 90% versus 78% respectively, their confusion matrices are 

displayed in Table 4.9 and 4.10 ; LVQ 3 had a higher true positive rate and lower false 

positive rate. For version 2.1, two best match units are selected and only updated if one 

belongs to the desired class and one does not, and the distance ratio is within a defined 

window [4]. The difference in LVQ 3 is that even if both best match units are of the 

correct class, they are updated but adjusted using an epsilon value (adjusted learning rate 

instead of the global learning rate). Another note in using Weka is to turn voting off, or 

else it would basically put everything into the class WWW because of its overwhelming 

data proportion relative to the other classes. 
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Table 4.9: entry 02 data set test results from LVQ 2.1 model 04 
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Table 4.10: entry 02 data set test results from LVQ 3 model 04. 
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4.2.3. Support Vector Machines – Weka SMO 

The SMO parameters were the default settings in Weka using the reduced data set 

as described in Table 4.1.  

Table 4.11: SMO GUI Parameters. 

Parameter Value 
Build Logistic Models False 
C 1.0 
Cache Size 250007 
Debug False 
Epsilon 1.0E-12 
Exponent 1.0 
Feature Space Normalization  False 
Filter Type Normalize Training Data 
Gamma 0.01 
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Lower Order Terms  False 
NumFolds -1 
Random Seed  1 
Tolerance Parameter  0.001 
Use RBF False 
 

SVM was clearly the superior classifier in the experimental results but processing 

time was a concern as was noted by Kim[37]; the accuracy was nearly 98%. 

Table 4.12: entry 02 data set test results from SMO model 04. 
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4.3. Comparison of Machine Learning Methods 

 These results indicate that for this application, LVQ 2.1 is the worst 

performer, with a low true positive rate and a high false positive rate. The next would be 

the SOM which in Weka does not provide a means of doing forbidden magnification; this 

was an issue due to the nature of the data as not all the classes were even close to being 
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equally represented in the data. LVQ 3 did a bit better than SOM but still had very high 

false positive rate for the largest class. The best but most time consuming of all methods 

investigated was the SVM. Weka has a binary implementation called SMO, which means 

additional coupling and pair-wise classification and comparison steps, on the order of n 

choose 2 were required. SVM had the highest accuracy (96-99% depending on the data set 

used for test), and lowest false positive rate of all the methods investigated. WWW class 

still had the highest FP rate, but it was only 3.3% for the 4 model tested on data set 2 and 

8.6% for the 8 model on data set 9. 

 This investigation is to use SVMs whenever the application doesn’t require 

real time results. SVMs may still be feasible in the application of network security if one 

could reduce the number of classes which would result in a speed boost. This may be 

possible if one were only looking at malicious flows such that there would be a few 

classes for different attack types and the rest of the traffic is lumped into one “other-

miscellaneous” class. But as things are, SVMs lag the rest in terms of computational and 

time resources. However, since real time is not the point of this thesis, it was decided that 

SVM aka Weka SMO would be used to classify processed data from CDX and the World 

Wide Web. 

4.4. Hybrid Comparison of Performance to Network or Host Alone  

The SMO parameters were the default settings in Weka using the combined data 

set containing all the 500 and 248 host and network features as to be described in this 

section. SMO was trained on 20% of the data set and the remainder 80% was used for 

testing. The parameter settings displayed are from the 3.6.2 version of Weka which is a 
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more recent version than the one used to determine the best machine learning algorithm 

used in section 4.2.  

Table 4.13: SMO Parameters. 

Parameter Value 
Build Logistic Models False 
C 1.0 
Checks Turned Off False 
Epsilon 1.0E-12 
Filter Type Normalize Training Data 
Kernel PolyKernel –C 250007 –E 1.0 
NumFolds -1 
Random Seed 1 
Tolerance Parameter 0.001 

 

It can be immediately noted that the scanning results are highly distinguishable 

from the normal and infected classes. Their confusion matrices are listed in Table 4.13, 

4.14 and 4.15. The rows in the confusion matrix are the labels of the samples, and the 

columns are the classification results. Host only achieved an accuracy of 76%, Network 

only achieved 87% and the Hybrid achieved an accuracy of 99%. Distinguish-ability 

between the Scanning class and the other two classes is high through these three scenarios; 

but, this is not a testament to the quality and effectiveness of the classification algorithm 

or of the feature extractor but rather of the fact that this data was collected in a separate 

environment, namely the CDX network. The other two remaining classes were gathered 

later from the real World Wide Web and thus share many more similar features that cause 

the Weka SMO classifier greater confusion and thus increased misclassifications. 

Table 4.14: Host Only Classification Results Confusion Matrix. 

 Infected Normal Scanning 
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Infected 83 78 0 
Normal 26 117 0 
Scanning 0 1 138 

 

It is safe to assume here and also in the results that follow that the percentage of 

correctly classified instances is actually inflated due to the artificially high accuracy of the 

scanning class detection. Just by averaging the Infected and Normal detection rate would 

yield a more representative accuracy metric of 66.7%. 

Table 4.15: Network Only Classification Results 

 Normal Scanning Infected 
Normal 2672 4 876 
Scanning 1 10373 0 
Infected 1593 7 402 

 

Averaging the Infected and Normal detection rate would yield a more 

representative accuracy metric of 73.4%. On the surface, this is clearly better than the 

results of the host data; however, one should consider the possibility that the type of 

infection, by trojan malware in this case, could leave a larger footprint or effect more 

statistically relevant change in network activity when compared to the host monitored 

activity. 

Table 4.16: Hybrid Host and Network Classification Results 

 Infected Normal Scanning 
Infected 159 0 2 
Normal 0 140 3 
Scanning 0 1 138 
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Averaging the Infected and Normal detection rate would yield a more 

representative accuracy metric of 98.4%. This result outperformed host only classification 

by 31.7% and network only classification by 25%. Text mining is typically used to look at 

frequencies of word strings and is often used to try to identify natural language features 

like authors’ writing style or language. Because effective HIDS depends heavily on event 

correlation, the text mining approach did not factor in cause and effect and looked only at 

the string structure. But this result is a positive indicator that something that seems as un-

intuitive as textual frequencies of host data from snapshot sensors contributes to greater 

accuracy in malicious activity detection. It also lends credence to the hypothesis that if 

numerical metrics of behavioral information rather than text frequencies could be 

garnered, it may significantly improve detection while vastly decreasing the number of 

attributes; and, ergo save on processing capacities. Also, since attacks tend to originate 

more on the network side, greater accuracy possibly would’ve been achieved by placing 

greater bias towards the network features. The final set of features trained tested in Weka 

contained 500 attributes from the host data and only 248 attributes from the network data. 

It’s conceivable that the number of attributes can be lowered on the host side and still 

preserve this level of performance. This is an avenue that can be considered in future 

work.  
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4.5. Hybrid Host-Network Comparison of Performance to SNORT 

IDS 

The analysis of the host data covered approximately 15 minutes of operational 

time of data gathered from seven of the Syslnternals tools. The size of the data was 

17.2mb. Taking a look at the SNORT alerts, there was 119 SNORT alerts that contained 

any reference to 10.1.30.5, which was the IP address of the DNS server contributing the 

CDX scanning data when the DNS was mostly likely discovered by NSA and being 

actively scanned. This is something that will get lost to system administrators in the sea of 

alerts to all the other nodes of the network. Most of the alerts are purely repetitious and 

thus redundant. An example is:  

[**] [1:1000001:0] Test https web activity [**] 

[Priority: 0]  

03/02-21:16:10.393891 10.1.30.5:1313 -> 65.55.25.59:443 

TCP TTL:128 TOS:0x0 ID:11481 IpLen:20 DgmLen:40 DF 

***A**** Seq: 0xB9C36DA0 Ack: 0x566EC7C0 Win: 0xFAF0 TcpLen: 

20 

 

The alert log contains over a hundred of this exact same alert, yet this alert reveals 

little information as to the true nature of what’s going on between the client(s) and the 

DNS host. 
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There were 5 SNORT alerts for each of the data sets Normal and Infected and 

these were regarding SHELLCODE EXECUTION, attributable to the .bat scripts used to 

start the SysInternals sensors to collect snapshot data. Effectively, SNORT got 0% TP and 

FP, and fails to capture any relevant information in the VISTA experiment surfing the real 

World Wide Web.  

Comparing SNORT performance to the performance as tested in section 4.4 is not 

a fair comparison. SNORT is fine grained and intentionally designed to perform on each 

packet or sequence of packets it sniffs; it is not meant to interpret all the alerts together as 

a whole to give a classification decision. However, just based on this rough description of 

its output on the network data, it is clearly performing a dismal job, either missing alerts 

or overwhelming the user. The goal is to move towards a system where a novice 

administrator should be able to identify a security breach as it unfolds, yet SNORT is still 

a system that requires high level training and experience to use effectively.   

4.6. Summary   

The results of this experiment confirm the hypothesis that statistical analysis using 

text based data mining in combination with network traffic flows is a more effective 

method for intrusion detection than host or network detection alone. At present, 

integrating host data to network data may achieve the highest effectiveness by augmenting 

existing event based NIDS systems like SNORT or BRO; for example, adding an interface 

that allows it access to relevant host data to reduce alerts from the age old rules set 

checking method. Trying to integrate these two vantages in a completely new platform 

using machine learning techniques is still a ways off from everyday practicality. Machine 
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learning based applications continue to be resource intensive ones. The new McAfee 

products called Entercept Host IPS and IntruShield Network IPS are currently the top tier 

available commercial products making a preliminary attempt at a more holistic approach 

to the enterprise network.  

If one considers the roles of HIDS and NIDS in their own capacities, or of 

examples of attacks that only Host IDS can detect and block:  

• Local Privilege Escalation Attacks 

• Client Side Attacks 

And, examples of attacks that only Network IDS can detect and block:  

• ARP Poisoning  

• Protocol Flooding  

• Routing Protocol Attacks  

It looks as though there will always be cases that augmentation by host data would 

not contribute to better detection and may in fact hamper the efficiency of malicious 

activity discovery. Even if future commercial products do integrate host and network data, 

some degree of separation may actually prove advantageous. 
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V. Conclusion and Future Work  

The results of this thesis demonstrates that using text mining methods to extract 

word vector attributes from raw host data is one effective though admittedly inefficient 

(resource wise) method of hybridizing host and network data features. Determining the 

best approach to use to combine the feature attributes of host and network data proved 

problematic, largely due to the quality of the raw data collection environment. 

Specifically, the time offset of the host and network packet information was not constant 

throughout the CDX exercise and made it difficult to positively identify whether a certain 

series of packets could be linked to the timestamps on the host data collection. The 

associations here often had to resort to a best estimate of when one network event could be 

linked to another on the host side. It does dramatically outperform from what the author 

had anticipated once the two perspectives came together, despite some imperfect 

matching. Although it seems that in this one case, text mining was not intuitive or obvious 

in the beginning, the investigation of the methodology was ultimately worth the effort 

resulting in impressively tantalizing findings that merit additional research. In many 

existing signature based intrusion detection applications, strings and word vectors already 

play an important role in making the determination of malicious infection attempts, 

McAfee and Norton are just a few popular commercial examples. It would thus seem to 

make sense that adding statistical analysis to look for correlations in frequency and length 

of such strings might contribute to better determinations. Although not originally a goal, 

this thesis also uncovered a very good but obsolete and forgotten tool for extracting 

features from PCAP files. The vast majority of the credit goes to Dr Gilbert Peterson of 

the Air Force Institute of Technology for making the 2005 perl source code work for 
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Andrew Moore’s original Fullstats attribute generator on the data gathered in 2010. The 

Weka analysis of the pure packet CSV was remarkably accurate in terms of having high 

true positives and low false negatives.   

The data classifier admittedly did not have a hard time distinguishing data gathered 

from the CDX network versus the data gathered from the real internet. This is a definite 

blemish that detracts from the potential of this research and the results would have been 

much more trustworthy if all three classes of data could be collected from one 

environment all at the same time. Now, it becomes questionable as to how much of the 

classification was based on the differences in the host OS, IP address ranges, timestamps, 

names of running processes etc. when it is known that accurate classification should 

mostly be based on the presence of non standard protocol [27], port numbers, packet size 

info, and TCP header flags on the network side and changes in file i/o events or processes 

and their resource utilization trends on the host end. 

Another negative is the infection mechanism. The best scenario would’ve have 

been to have a hacker actively targeting the host, having both successful and failed 

intrusions, all the while logging actions. Instead, the CDX network failed to be infiltrated 

and the performance of the HIDS/NIDS model is pitted against the alerts logged by Snort 

for the CDX data. In the case of the “Infected” data gathered later, a generic trojan was 

intentionally downloaded but the environment of the internet is not controlled enough as 

to determine if or when command and control was successfully established to a botnet.  

These problems in data collection are not easy ones to mitigate. Lots of research 

dollars are expended in network security research and we have yet to establish a 
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thoroughly unbiased method of collection that accurately reflects the environment that the 

typical user operates in.  

5.1. Limitations and Assumptions 

5.1.1. Inconsistent Controlled and Uncontrolled Environment  

The CDX network defense was chosen over a real network to obtain the raw data 

set. For CDX competition purposes, the network is isolated and activity is simulated due 

to the potential damaging consequences of performing network attacks on a real network 

with real consequences. Another hurdle preventing data collection on a real network is the 

need to address invasion of privacy fears, an issue that both Google and Facebook have 

often been portrayed in the media for being in violation of. In addition, any data collected 

from an operational enterprise network must be scrubbed of personally identifiable 

information. 

Data collected from and the CDX’s closed network was later found to be lacking 

representative samples of normal and infected activity. This necessitated a second data 

collection on an even more limited network. This limited network consisted of a Windows 

Vista host surfing the real internet. This gave the opportunity to collect a set of data with 

normal activity features and a set of data from a host that had a trojan infection acquired 

by downloading malicious scripts. 

The inability to collect realistic enterprise data resulted in failures in trying to 

perform feature generation and selection in order to separate attack versus normal activity. 

Even in the controlled environment of the CDX, there were several uncontrolled elements: 
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it is unknown what were the actual attack exploit attempts used by the NSA and at what 

time or sequence they occurred. The NSA failed to infiltrate our servers and any abnormal 

behaviors we noticed like the inability to reach a certain web address, was not linked to 

any alerts generated by our host event logs nor attributable to any SNORT alerts.  

Categories of exploit activity are limited to the accuracy of alerts generated by 

SNORT IDS, and do not represent the totality of activities which can be executed against 

a host machine. Collections were made from multiple servers in the AFIT1 network. Due 

to our unique setup, resulting feature selection and classification results is considered to 

hold true only for the combination of operating system (Windows Server 2003), selected 

sensors, and server configuration used here. However, since this thesis applies a 

methodology which can be extended, it serves as a proof of concept versus a deliverable 

IDS platform. Additional collections across many systems will include varied events 

which will likely produce results of lower accuracy but should be similar in trend. 

5.1.2. Sensor Impact to System 

 The selected methodology involves the collection of a live system's internal 

forensic data, which means that sensor tools must minimally interfere with server 

functions. While consideration was given to select more lightweight sensors over resource 

intensive ones, sensor activity still impacts collections. First, the system being monitored 

is less responsive while running these additional programs to sense the host environment. 

Second, collected data reflects information that includes evidence of sensor activity, and 

modify the host systems. These facts should be taken into account during later stages of 
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forensic analysis so as not to mistake the impact of these tools for that of a successful 

intrusion where none exists. 

5.1.3. Partial Observable Environment 

Due to the size of the search space, the limitations of processing power and the 

sensors selected, the host environment is only partially observable. Given this constraint, 

care is taken to choose sensors which each provide an uncorrelated subset of the search 

space in order maximize what can be gained from the collected forensic evidence. 

Optimality conditions for sensor selection include consistency, completeness, speed, and 

resource overhead. While no formal method is used to select sensors for observing the 

target environment, these conditions were taken into account, as was standardization; data 

commonly used by other researchers in this field was collected here as well. 

5.2. Contributions 

This work provides several contributions to the field of intrusion detection and 

Machine Learning. First, it shows that the current focus on just network data for malicious 

activity classification can be given a huge boost by including some form of host 

performance and state information. The results compare the novel approach of integrating 

host and network features and applying support vector machine for the detection and 

classification of three attack stages. Indications are that the best way to improve is to focus 

on where the highest accuracy is already being achieved, at the network side.  

Future research should be on finding and augmenting the network features with the 

most relevant host features so that one can move away from the 500 string attributes used 
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here and toward something more compact that can feasibly be used for real time analysis. 

Second, deficiencies for data collection are specifically identified and suggestions are 

made for the need to standardize or develop a standard process akin to the “scientific 

method,” for data collection that can uniquely describe the host state and associated 

network activity.  

Lastly, an updated Fullstats attribute generator is provided to aid future work in 

network packet analysis. A meticulous background search revealed no other existing tool 

that can pull as many features from a PCAP file. Further development of this tool to add a 

GUI interface or to integrate into Weka or MATLAB could greatly aid this field of 

research.  

5.3. Recommendations for Future Work 

The highest priority task for future work is to produce a labeled data set that 

contains a broad continuum of attack stages would be ideal and both host and network 

data need to be gathered together in the same environment. A methodology for this 

collection should be developed so that data that must be collected at different times and in 

different environments can still be compared. 

Also of importance, is to identify an auxiliary method for associating host and 

network data. Timestamps are not one-to-one associations and better “triggers” are 

needed. 

An application that can deal with the high volume of data in “real time” and 

generate features “on the fly” that could compress the amount of analytical data would be 
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highly sought after. At the start of this research, the initial time hog was thought to be 

running the machine learning algorithm. This proved true but additionally, both feature 

generation and large file transfers took many more hours than anticipated. Research that 

can bring tools for post mortem forensics into live action would greatly complement the 

existing means that System Administrators have to identify network breaches.  

Further, as mentioned in the Section 5.2, a periodic maintenance update to the 

Fullstats attribute generator is needed. Since there really is no other tool that can pull as 

many features from a PCAP file, such an application is valuable in the search for the most 

important features or combinations of features which could significantly lessen the 

processing time or burden for classification algorithms. Developing this tool to add a GUI 

interface or to integrate into Weka or MATLAB could open this field up to other seasoned 

researchers or novice investigators.  

Lastly, due to the explosion in bandwidth of cell phone networks and large area 

WI-MAX, focus should be shifting to making intrusion detection tools more ubiquitous 

and able to function on a variety of mobile devices. Thus, it needs to be determined what 

features are most important for the host if it is a wireless media device that may contain 

other channels of communication such as 3G/4G, GPS or satellite radio. As 

communication starts pushing the barriers beyond IP packets, security becomes an even 

greater challenge to obtain. 
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Number  Short Long 
1 Server Port 
 
 
2 Client Port 
3 min IAT 
 
4 q1 IAT 
5 med IAT 
6 mean  IAT 
7 q3 IAT 
8 max IAT 
9 var IAT 
10 min data wire 
 
11 q1 data wire 
12 med data wire 
13 mean  data wire 
14 q3 data wire 
15 max data wire 
16 var data wire 
17 min data ip 
 
18 q1 data ip 
19 med data ip 
20 mean  data ip 
21 q3 data ip 
22 max data ip 
23 var data ip 
24 min data control 
 
25 q1 data control 
26 med data control 
27 mean  data control 
28 q3 data control 
29 max data control 
30 var data control 
31 total packets  a b 
32 total packets  b a 

Port Number  at server;  we can  establish  server  and 
client ports as we limit ourselves to flows for which 

we see the initial connection  set-up. 
Port Number  at client 
Minimum  packet  inter-arrival  time  for all packets  

of the flow (considering  both directions). 
First quartile inter-arrival time 
Median  inter-arrival time 
Mean inter-arrival time 
Third  quartile packet  inter-arrival 

time Maximum  packet  inter-arrival time 
Variance  in packet  inter-arrival time 

Minimum of bytes in (Ethernet) packet,  using the 
size of the packet  on the wire. 

First quartile of bytes in (Ethernet) packet 
Median  of bytes in (Ethernet) packet 
Mean of bytes in (Ethernet) packet 
Third  quartile of bytes in (Ethernet) 

packet Maximum  of bytes in (Ethernet) packet 
Variance  of bytes in (Ethernet) packet 

Minimum of total bytes in IP packet,  using the size 
of payload  declared  by the IP packet 

First quartile of total bytes in IP packet 
Median  of total bytes in IP packet 
Mean of total bytes in IP packet 
Third  quartile of total bytes in IP 

packet Maximum  of total bytes in IP packet 
Variance  of total bytes in IP packet 

Minimum   of  control   bytes   in  packet,    size  of  the 
(IP/TCP) packet  header 
First quartile of control bytes in packet 
Median  of control bytes in packet 
Mean of control bytes in packet 
Third  quartile of control bytes in 

packet Maximum  of control bytes in packet 
Variance  of control bytes packet 

The total number  of packets  seen (client→server). 
” (server→client) 

Continued on next page 
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Number  Short Long 
33 ack pkts sent a b 
 
34 ack pkts sent b a 
35 pure acks sent a b 
 

 
 
 
36 pure acks sent b a 
37 sack pkts sent a b 
 
38 sack pkts sent b a 
39 dsack pkts sent a b 
 
40 dsack pkts sent b a 
41 max sack blks/ack a b 
 
42 max sack blks/ack b a 
43 unique  bytes sent a b 
 
 
44 unique  bytes sent b a 
45 actual  data pkts a b 
 
46 actual  data pkts b a 
47 actual  data bytes a b 
 
 
48 actual  data bytes b a 
49 rexmt data pkts a b 
 
50 rexmt data pkts b a 
51 rexmt data bytes a b 
 
52 rexmt data bytes b a 
53 zwnd probe  pkts a b 
 

 
 
 
54 zwnd probe  pkts b a 
55 zwnd probe  bytes a b 
 
56 zwnd probe  bytes b a 
57 outoforder  pkts a b 

The total number  of ack packets  seen (TCP segments 
seen with the ACK bit set) (client→server). 
” (server→client) 
The  total number  of ack  packets  seen that were not 
piggy-backed  with  data  (just the TCP   header   and 
no TCP  data payload)  and  did  not have  any  of the 
SYN/FIN/RST flags set (client→server) 
” (server→client) 
The  total number  of ack packets  seen carrying  TCP 
SACK [6] blocks (client→server) 
” (server→client) 
The  total number  of sack  packets  seen  that carried 
duplicate SACK (D-SACK) [7] blocks.  (client→server) 
” (server→client) 
The maximum  number of sack blocks seen in any sack 
packet.  (client→server) 
” (server→client) 
The number of unique bytes sent, i.e., the total bytes of 
data sent excluding retransmitted bytes and any bytes 
sent doing window probing.  (client→server) 
” (server→client) 
The  count  of all the packets  with  at least  a byte  of 
TCP  data payload.  (client→server) 
” (server→client) 
The  total bytes of data seen.  Note that this includes 
bytes from retransmissions / window probe packets  if 
any.  (client→server) 
” (server→client) 
The  count of all the packets  found  to be retransmis- 
sions.  (client→server) 
” (server→client) 
The  total bytes  of data found  in  the retransmitted 
packets.  (client→server) 
” (server→client) 
The count of all the window probe packets seen. (Win- 
dow probe packets  are typically sent by a sender when 
the receiver last  advertised  a zero receive window, to 
see if the window has opened up now).  (client→server) 
” (server→client) 
The total bytes of data sent in the window probe pack- 
ets.  (client→server) 
” (server→client) 
The  count  of all the packets  that were seen to arrive 
out of order.  (client→server) 

Continued on next page 
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Number  Short Long 
58 outoforder  pkts b a 
59 pushed  data pkts a b 
 
60 pushed  data pkts b a 
61 SYN pkts sent a b 
 
62 FIN pkts sent a b 
 
63 SYN pkts sent b a 
 
64 FIN pkts sent b a 
 
65 req 1323 ws a b 
 
 
 
 
 
 
 
66 req 1323 ts a b 
67 req 1323 ws b a 
 
 
 
 
 
 
 
68 req 1323 ts b a 
69 adv wind scale a b 
 
 
 
 
 
 
 
 
70 adv wind scale b a 
71 req sack a b 
 
 
72 req sack b a 
73 sacks sent a b 
 
74 sacks sent b a 

”  (server→client) 
The  count  of all the packets  seen with  the PUSH  bit 
set in the TCP  header.  (client→server) 
” (server→client) 
The  count  of all the packets  seen with  the SYN bits 
set in the TCP  header  respectively  (client→server) The 
count of all the packets  seen with the FIN bits set in the 
TCP  header  respectively  (client→server) 
The  count  of all the packets  seen with  the SYN bits 
set in the TCP  header  respectively  (server→client) The 
count of all the packets  seen with the FIN bits set in the 
TCP  header  respectively  (server→client) 
If   the  endpoint   requested   Window   Scali ng/Time 
Stamp  options  as  specified  in  RFC  1323[8]  a  ‘Y’  is 
printed on the respective  field.  If the option  was not 
requested,  an ‘N’ is printed.  For  example,  an “N/Y” 
in this field means that the window-scaling option was 
not specified, while the Time-stamp option  was speci- 
fied in the SYN segment.  (client→server) 
. . . 
If   the  endpoint   requested   Window   Scaling/Time 
Stamp  options  as  specified  in  RFC  1323[8]  a  ‘Y’  is 
printed on the respective  field.  If the option  was not 
requested,  an ‘N’ is printed.  For  example,  an “N/Y” 
in this field means that the window-scaling option was 
not specified, while the Time-stamp option  was speci- 
fied in the SYN segment.  (client→server) 
. . . 
The  window scaling  factor  used.   Again,  this field is 
valid  only if the connection  was captured fully to in- 
clude  the SYN packets.    Since the connection  would 
use window scaling if and only if both sides requested 
window scaling  [8],  this field is reset  to 0 (even  if a 
window scale was requested in the SYN packet  for this 
direction), if the SYN packet  in the reverse direction 
did not carry the window scale option.  (client→server) 
” (server→client) 
If the end-point sent a SACK permitted option  in the 
SYN packet  opening  the connection,  a ‘Y’ is printed; 
otherwise ‘N’ is printed.  (client→server) 
” (server→client) 
The total number of ACK packets seen carrying SACK 
information.  (client→server) 
” (server→client) 
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Number  Short Long 
75 urgent data pkts a b 
 
76 urgent data pkts b a 
77 urgent data bytes a b 
 

 
 
 
78 urgent data bytes b a 
79 mss requested a b 
 
 
80 mss requested b a 
81 max segm size a b 
 
82 max segm size b a 
83 min segm size a b 
 
84 min segm size b a 
85 avg segm size a b 
 

 
 
 
86 avg segm size b a 
87 max win adv a b 
 

 
 
 
 
 
 
 
 
 
88 max win adv b a 
89 min win adv a b 
 
 
90 min win adv b a 
91 zero win adv a b 
 
92 zero win adv b a 
93 avg win adv a b 

The total number of packets  with the URG bit turned 
on in the TCP  header.  (client→server) 
” (server→client) 
The  total bytes of urgent data sent.  This  field is cal- 
culated by  summing  the urgent pointer offset values 
found in packets  having the URG  bit set in the TCP 
header.  (client→server) 
” (server→client) 
The  Maximum   Segment  Size (MSS)  requested  as  a 
TCP  option  in the SYN packet  opening  the connec- 
tion.  (client→server) 
” (server→client) 
The  maximum  segment size observed  during  the life- 
time of the connection.  (client→server) 
” (server→client) 
The  minimum  segment size observed  during  the life- 
time of the connection.  (client→server) 
” (server→client) 
The average segment size observed during the li fetime 
of the connection  calculated  as the value  reported  in 
the actual  data bytes field divided  by the actual  data 
pkts reported.  (client→server) 
” (server→client) 
The maximum  window advertisement seen. If the con- 
nection  is  using  window  scaling  (both  sides  negoti- 
ated window  scaling  during  the opening  of the con- 
nection),  this is the maximum  window-scaled  adver- 
tisement seen in the connection.  For a connection  us- 
ing window scaling,  both  the SYN segments  opening 
the connection have to be captured in the dumpfile for 
this and the following window statistics to be accurate. 
(client→server) 
” (server→client) 
The minimum window advertisement seen. This is the 
minimum  window-scaled  advertisement  seen  if both 
sides negotiated window scaling.  (client→server) 
” (server→client) 
The number of times a zero receive window was adver- 
tised.  (client→server) 
” (server→client) 
The  average  window  advertisement  seen,  calculated 
as the sum  of all window advertisements  divided  by 
the total number  of packets  seen.   If the connection 
endpoints negotiated window scaling,  this average  is 
calculated as the sum of all window-scaled  advertise- 
ments divided by the number of window-scaled packets 
seen.   Note that in the window-scaled  case,  the win- 
dow advertisements in the SYN packets  are excluded 
since the SYN packets  themselves cannot have  their 
window advertisements scaled,  as per  RFC  1323 [8]. 
(client→server) 
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Number  Short Long 
94 avg win adv b a 
95 initial window-bytes a b 
 
 
 
 
 
 
 
 
96 initial window-bytes b a 
97 initial window-packets  a b 
 
98 initial window-packets  b a 
99 ttl stream length a b 
 
 
 
 
 
 
 
100 ttl stream length b a 
101 missed data a b 
 
 
 
 
 
102 missed data b a 
103 truncated data a b 
 

 
 
 
 
 
 
 
 
 
104 truncated data b a 
105 truncated packets  a b 
 
106 truncated packets  b a 
107 data xmit time a b 

”  (server→client) 
The  total number  of bytes sent in the initial window 
i.e., the number of bytes seen in the initial fli ght of data 
before  receiving  the first ack  packet  from  the other 
endpoint.   Note that the ack  packet  from  the other 
endpoint is the first ack acknowledging some data (the 
ACKs part of the 3-way handshake do not count), and 
any  retransmitted packets  in this stage are excluded. 
(client→server) 
” (server→client) 
The  total number  of segments (packets) sent in  the 
initial window as explained  above.  (client→server) 
” (server→client) 
The Theoretical Stream  Length.  This is calculated as 
the difference  between  the sequence  numbers  of the 
SYN and  FIN  packets,  giving the length of the data 
stream seen.   Note that this calculation is aware  of 
sequence  space  wrap-arounds,  and  is printed only  if 
the connection  was complete  (both the SYN and FIN 
packets  were seen).  (client→server) 
” (server→client) 
The   missed  data,  calculated  as  the  difference  be- 
tween  the ttl  stream  length  and  unique  bytes  sent. 
If the connection  was  not complete,  this  calculation 
is invalid and an “NA” (Not Available) is printed. 
(client→server) 
” (server→client) 
The  truncated data, calculated as the total bytes of 
data truncated during  packet  capture.  For  example, 
with tcpdump,  the snaplen  option  can  be  set  to 64 
(with -s option)  so that just the headers  of the packet 
(assuming  there are no options)  are captured, truncat- 
ing most of the packet  data. In an Ethernet with max- 
imum  segment  size of 1500 bytes,  this  would amount 
to truncated data of 1500 64 = 1436bytes for a packet. 
(client→server) 
” (server→client) 
The  total number  of packets  truncated as explained 
above.  (client→server) 
” (server→client) 
Total data  transmit time,  calculated  as  the  differ- 
ence  between  the times  of capture of the fir st  and 
last packets  carrying  non-zero TCP  data payload. 
(client→server) 

Continued on next page 
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Number  Short Long 
108 data xmit time b a 
109 idletime  max a b 
 
 
110 idletime  max b a 
111 throughput a b 
 
 
 
 
 
112 throughput b a 
113 RTT  samples  a b 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
114 RTT  samples  b a 
115 RTT  min a b 
116 RTT  min b a 
117 RTT  max a b 
118 RTT  max b a 
119 RTT  avg a b 
 

 
 
 
120 RTT  avg b a 
121 RTT  stdv a b 
 
122 RTT  stdv b a 
123 RTT  from 3WHS a b 

”  (server→client) 
Maximum  idle time, calculated as the maximum  time 
between consecutive packets  seen in the direction. 
(client→server) 
” (server→client) 
The average throughput calculated as the unique bytes 
sent divided by the elapsed time i.e., the value reported 
in the unique  bytes sent field divided  by the elapsed 
time (the time difference between  the capture of the 
first and last packets in the direction). (client→server) 
” (server→client) 
The  total number  of Round-Trip Time  (RTT) sam- 
ples found.   tcptrace is pretty smart about  choosing 
only  valid  RTT  samples.    An  RTT  sample  is found 
only if an ack packet  is received from the other  end- 
point  for  a  previously  transmitted packet  such  that 
the acknowledgment value  is 1 greater than the last 
sequence number of the packet.  Further, it is required 
that the packet  being acknowledged  was not retrans- 
mitted,  and  that no  packets  that came  before  it  in 
the sequence space were retransmitted after the packet 
was transmitted.  Note : The  former condition invali- 
dates RTT  samples due to the retransmission ambigu- 
ity problem,  and the latter condition invalidates RTT 
samples since it could be the case that the ack packet 
could be cumulatively acknowledging  the retransmit- 
ted packet,  and  not necessarily  ack-ing  the packet  in 
question.  (client→server) 
” (server→client) 
The minimum  RTT  sample seen.  (client→server) 
” (server→client) 
The maximum  RTT  sample seen.  (client→server) 
” (server→client) 
The  average  value  of RTT  found,  calculated 
straightforward-ly as the sum  of all the RTT  values 
found  divided  by  the total number  of RTT  samples. 
(client→server) 
” (server→client) 
The standard deviation of the RTT  samples. 
(client→server) 
” (server→client) 
The   RTT   value   calculated  from  the  TCP   3-Way 
Hand-Shake  (connection  opening)  [9],  assuming  that 
the SYN packets  of the connection were captured. 
(client→server) 

Continued on next page 
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Number  Short Long 
124 RTT  from 3WHS b a 
125 RTT  full sz smpls a b 
 

 
 
 
126 RTT  full sz smpls b a 
127 RTT  full sz min a b 
128 RTT  full sz min b a 
129 RTT  full sz max a b 
130 RTT  full sz max b a 
131 RTT  full sz avg a b 
132 RTT  full sz avg b a 
133 RTT  full sz stdev a b 
 
134 RTT  full sz stdev b a 
135 post-loss acks a b 
 
 
 
 
 
 
 
 
 
 
 
136 post-loss acks b a 
137 segs cum acked a b 
 
 
138 segs cum acked b a 
139 duplicate acks a b 
 
140 duplicate acks b a 
141 triple dupacks  a b 
 
 
 
 
 
142 triple dupacks  b a 
143 max # retrans a b 

”  (server→client) 
The total number of full-size RTT  samples, calculated 
from the RTT  samples  of full-size segments.  Full-size 
segments are defined to be the segments of the largest 
size seen in the connection.  (client→server) 
” (server→client) 
The minimum  full-size RTT  sample.  (client→server) 
” (server→client) 
The maximum  full-size RTT  sample.  (client→server) 
” (server→client) 
The average  full-size RTT  sample.  (client→server) 
” (server→client) 
The standard deviation of full-size RTT  samples. 
(client→server) 
” (server→client) 
The  total number  of ack packets  received after losses 
were  detected and  a  retransmission occurred.    More 
precisely,  a  post-loss ack  is found  to occur  when  an 
ack  packet  acknowledges  a packet  sent (acknowledg- 
ment value in the ack pkt is 1 greater than the packet’s 
last sequence number),  and at least one packet  occur- 
ring before the packet  acknowledged,  was retransmit- 
ted later.  In other words,  the ack packet  is received 
after we observed a (perceived)  loss event and  are re- 
covering from it. (client→server) 
” (server→client) 
The count of the number of segments that were cumu- 
latively acknowledged  and not directly  acknowledged. 
(client→server) 
” (server→client) 
The  total number  of duplicate acknowledgments re- 
ceived.  (client→server) 
” (server→client) 
The total number of triple duplicate acknowledgments 
received (three duplicate acknowledgments acknowl- 
edging the same segment), a condition commonly used 
to trigger  the fast-retransmit/fast-recovery  phase  of 
TCP.  (client→server) 
” (server→client) 
The  maximum   number   of  retransmissions  seen  for 
any  segment  during  the lifetime  of  the connection. 
(client→server) 
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Number  Short Long 
144 max # retrans b a 
145 min retr  time a b 
 
 
146 min retr  time b a 
147 max retr  time a b 
 
148 max retr  time b a 
149 avg retr  time a b 
 
 
150 avg retr  time b a 
151 sdv retr  time a b 
 
 
152 sdv retr  time b a 
153 min data wire a b 
 
154 q1 data wire a b 
155 med data wire a b 
156 mean  data wire a b 
157 q3 data wire a b 
158 max data wire a b 
159 var data wire a b 
160 min data ip a b 
161 q1 data ip a b 
162 med data ip a b 
163 mean  data ip a b 
164 q3 data ip a b 
165 max data ip a b 
166 var data ip a b 
167 min data control a b 
168 q1 data control a b 
169 med data control a b 
170 mean  data control a b 
171 q3 data control a b 
172 max data control a b 
173 var data control a b 
174 min data wire b a 
 
175 q1 data wire b a 
176 med data wire b a 
177 mean  data wire b a 

”  (server→client) 
The  minimum  time seen  between  any  two 
(re)transmissions of a segment amongst all the 
retransmissions seen.  (client→server) 
” (server→client) 
The  maximum  time seen  between  any  two 
(re)transmissions of a segment.  (client→server) 
” (server→client) 
The  average  time seen  between  any  two 
(re)transmissions    of   a    segment    calculated    from 
all the retransmissions. (client→server) 
” (server→client) 
The standard deviation of the retransmission-time 
samples obtained from all the retransmissions. 
(client→server) 
” (server→client) 
Minimum   number   of  bytes   in   (Ethernet)  packet 
(client→server) 
First quartile of bytes in (Ethernet) packet 
Median  of bytes in (Ethernet) packet 
Mean of bytes in (Ethernet) packet 
Third  quartile of bytes in (Ethernet) packet 
Maximum  of bytes in (Ethernet) packet 
Variance  of bytes in (Ethernet) packet 
Minimum number  of total bytes in IP packet 
First quartile of total bytes in IP packet 
Median  of total bytes in IP packet 
Mean of total bytes in IP packet 
Third  quartile of total bytes in IP packet 
Maximum  of total bytes in IP packet 
Variance  of total bytes in IP packet 
Minimum of control bytes in packet 
First quartile of control bytes in packet 
Median  of control bytes in packet 
Mean of control bytes in packet 
Third  quartile of control bytes in packet 
Maximum  of control bytes in packet 
Variance  of control bytes packet 
Minimum   number   of  bytes   in   (Ethernet)  packet 
(server→client) 
First quartile of bytes in (Ethernet) packet 
Median  of bytes in (Ethernet) packet 
Mean of bytes in (Ethernet) packet 

Continued on next page 
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Number  Short Long 
178 q3 data wire b a 
179 max data wire b a 
180 var data wire b a 
181 min data ip b a 
182 q1 data ip b a 
183 med data ip b a 
184 mean  data ip b a 
185 q3 data ip b a 
186 max data ip b a 
187 var data ip b a 
188 min data control b a 
189 q1 data control b a 
190 med data control b a 
191 mean  data control b a 
192 q3 data control b a 
193 max data control b a 
194 var data control b a 
195 min IAT  a b 
196 q1 IAT  a b 
197 med IAT  a b 
198 mean  IAT  a b 
199 q3 IAT  a b 
200 max IAT  a b 
201 var IAT  a b 
202 min IAT  b a 
203 q1 IAT  b a 
204 med IAT  b a 
205 mean  IAT  b a 
206 q3 IAT  b a 
207 max IAT  b a 
208 var IAT  b a 
209 Time  since last connection 
210 No. transitions bulk/trans 
 
 
 
 
 
211 Time  spent in bulk 
212 Duration 
213 % bulk 
214 Time  spent idle 

Third  quartile of bytes in (Ethernet) packet 
Maximum  of bytes in (Ethernet) packet 
Variance  of bytes in (Ethernet) packet 
Minimum number  of total bytes in IP packet 
First quartile of total bytes in IP packet 
Median  of total bytes in IP packet 
Mean of total bytes in IP packet 
Third  quartile of total bytes in IP packet 
Maximum  of total bytes in IP packet 
Variance  of total bytes in IP packet 
Minimum of control bytes in packet 
First quartile of control bytes in packet 
Median  of control bytes in packet 
Mean of control bytes in packet 
Third  quartile of control bytes in packet 
Maximum  of control bytes in packet 
Variance  of control bytes packet 
Minimum of packet  inter-arrival time (client→server) 
First quartile of packet  inter-arrival time 
Median  of packet  inter-arrival time 
Mean of packet  inter-arrival time 
Third  quartile of packet  inter-arrival time 
Maximum  of packet  inter-arrival time 
Variance  of packet  inter-arrival time 
Minimum of packet  inter-arrival time (server→client) 
First quartile of packet  inter-arrival time 
Median  of packet  inter-arrival time 
Mean of packet  inter-arrival time 
Third  quartile of packet  inter-arrival time 
Maximum  of packet  inter-arrival time 
Variance  of packet  inter-arrival time 
Time since the last connection  between these hosts The  
number  of transitions between  transaction  mode and  
bulk transfer  mode,  where bulk transfer  mode is 
defined  as the time  when  there  are  more  than three 
successive packets  in the same direction  without  any 
packets  carrying  data in the other direction 
Amount of time spent in bulk transfer mode 
Connection  duration 
Percent of time spent in bulk transfer 
The  time spent idle (where  idle time is the accumu- 
lation of all periods  of 2 seconds or greater when  no 
packet  was seen in either direction) 

Continued on next page 
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Number  Short Long 
215 % idle 
216 Effective Bandwidth 
 
217 Effective Bandwidth a b 
218 Effective Bandwidth b a 
219 FFT  all  
 
 
220 FFT  all  
221 FFT  all  
222 FFT  all  
223 FFT  all  
224 FFT  all  
225 FFT  all  
226 FFT  all  
227 FFT  all  
228 FFT  all  
229 FFT  a b 
 
 
230 FFT  a b 
231 FFT  a b 
232 FFT  a b 
233 FFT  a b 
234 FFT  a b 
235 FFT  a b 
236 FFT  a b 
237 FFT  a b 
238 FFT  b a 
239 FFT  b a 
 
 
240 FFT  b a 
241 FFT  b a 
242 FFT  b a 
243 FFT  b a 
244 FFT  b a 
245 FFT  b a 
246 FFT  b a 
247 FFT  b a 
248 FFT  b a 
249 Classes 

Percent of time spent idle 
Effective  Bandwidth based  upon  entropy  [10]  (both 
directions) 
” (client→server) 
” (server→client) 
FFT  of packet  IAT (arctan of the top-ten frequencies 
ranked  by  the magnitude of their contribution) (all 
traffi c) (Frequency  #1) 
” (Frequency  #2) 
” . . . 
” . . . 
” . . . 
” . . . 
” . . . 
” . . . 
” . . . 
” (Frequency  #10) 
FFT   of packet  IAT  (arctan of the top-ten  frequen- 
cies ranked  by  the magnitude of their contribution) 
(client→server) (Frequency  #1) 
” (Frequency  #2) 
” . . . 
” . . . 
” . . . 
” . . . 
” . . . 
” . . . 
” . . . 
” (Frequency  #10) 
FFT   of packet  IAT  (arctan of the top-ten  frequen- 
cies ranked  by  the magnitude of their contribution) 
(server→client) (Frequency  #1) 
” (Frequency  #2) 
” . . . 
” . . . 
” . . . 
” . . . 
” . . . 
” . . . 
” . . . 
” (Frequency  #10) 
Application class, as assigned in [1] 
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 Appendix B. Notes from CDX data collection 

1. All servers and workstations were on Virtual Machines, AFIT2 had them in ESXi and 

had no access to portable USB Drives to get extra storage or transport data.  

2. Virtual machines also had trouble with recognizing CD drives sometimes. 

3. All tools had to be run as Admin. These were from the Windows SysInternals suite: 

services, processes, handle, netstat, listDLLs, logonsessions and psInfo. 

4. The memory tool windd requires a .sys file to be run in batch mode and that file must 

be stored in the directory indicated by typing "sc qc win32dd" or "sc qc win64dd" 

5. windd must be run and memory dump saved in the same directory as where the 

executable is stored. 

6. The memory dump took 4-6 minutes to complete running on low priority, size of 

dumps ranged from 700mb-2gb. 

7. The memory dump process cannot be killed once started except by a hard shutdown.  

8. The Task Scheduler is disabled on user workstations by group policy or else it 

would've been possible to run tools without a user logged on. In Vista and higher, it can 

even hide the cmd prompt to keep it from interfering with server screen space. 

9. The naming of files according to time did not always work for the memory dump. 

Whenever the hour was in the single digits, the file would not record the time correctly. 

This error made the files overwrite each other from 12am to 10am (0100 to 1000 hours). 
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10. Firewall was implemented by OpenBSD with PF, SNORT was also used on this 

machine. 

11. IPSEC was used to limit ports for communication between servers and workstations, 

this severely limited the actions that could cause servers to be compromised. 

12. KIWI Syslog was used as the software for the event logging server. Snare was used as 

the agent for collecting and directing logs from networked windows machines. 

13. Time was not synchronized to the network in a consistent manner and affect the 

differential between the network packet timestamps and host data timestamps. 

 

User friendly considerations: 

If Users are only allowed by policy to log on one at a time, not switch, memory dump 

interferes with the ability to log off. 

If allotted virtual RAM < 1GB, windd will freeze or blue-screen the machine OS. 

Memory dump interferes with reboot and/or log off. If the situation is to defend against 

network attack, data collection can interfere with responsive actions. 

Exchange and Domain Controller most sensitive to environmental changes and these 

tools should only be added if no other changes will be made to the settings on these 

machines. 
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Admins can feel insecure about creating other admin accounts, I could not convince 

server admins to give me another account to be able to frequently monitor these tools. 

They had to log me in and out, made it difficult when they had higher priorities. 

After the exercise started, the passwords were changed on a daily basis and there were 

not enough copies made of the new list to easily access. They were so complicated that 

even the admins were unable to memorize them. 
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Appendix C. List of Software Tools 

These tools will be provided as a copy on a supplied external Hard Drive. 

A batch script to automate host data collection: 

@echo off 

:loop 

 

echo Starting Dlls to 
"F:\F_data\Dlls\dlls_%date:~12,2%_%date:~4,2%_%date:~7,2%_%time:~0,2%_%time:
~3,2%_%time:~6,2%.txt" 

echo. 

echo Press [CTRL]-C to exit 

F:\ForensicScan\Toolkit\Listdlls.exe  >> 
"F:\F_data\Dlls\dlls_%date:~12,2%_%date:~4,2%_%date:~7,2%_%time:~0,2%_%time:
~3,2%_%time:~6,2%.txt" 

 

echo Starting LoggedOn to 
"C:\F_data\LogonSessions\LoggedOn_%date:~12,2%_%date:~4,2%_%date:~7,2%_%ti
me:~0,2%_%time:~3,2%_%time:~6,2%.txt" 

echo. 

echo Press [CTRL]-C to exit 

F:\ForensicScan\Toolkit\logonsessions.exe  >> 
"F:\F_data\LogonSessions\LoggedOn_%date:~12,2%_%date:~4,2%_%date:~7,2%_%tim
e:~0,2%_%time:~3,2%_%time:~6,2%.txt" 

 

echo Starting Handles to 
"F:\F_data\Handles\handles_%date:~12,2%_%date:~4,2%_%date:~7,2%_%time:~0,2%_
%time:~3,2%_%time:~6,2%.txt" 

echo. 
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echo Press [CTRL]-C to exit 

F:\ForensicScan\Toolkit\handle.exe  >> 
"F:\F_data\Handles\handles_%date:~12,2%_%date:~4,2%_%date:~7,2%_%time:~0,2%_
%time:~3,2%_%time:~6,2%.txt" 

 

netstat -o -n -a > 
"F:\F_data\Netstat\netstat_%date:~12,2%_%date:~4,2%_%date:~7,2%_%time:~0,2%_%
time:~3,2%_%time:~6,2%.txt" 

 

echo Starting process snapshots to 
"F:\F_data\Processes\processes_%date:~12,2%_%date:~4,2%_%date:~7,2%_%time:~0,2
%_%time:~3,2%_%time:~6,2%.pslistx" 

echo. 

echo Press [CTRL]-C to exit 

F:\ForensicScan\Toolkit\pslist.exe -x >> 
"F:\F_data\Processes\processes_%date:~12,2%_%date:~4,2%_%date:~7,2%_%time:~0,2
%_%time:~3,2%_%time:~6,2%.pslistx" 

 

type C:\WINDOWS\System32\drivers\etc\services > 
"F:\F_data\Services\services_%date:~12,2%_%date:~4,2%_%date:~7,2%_%time:~0,2%
_%time:~3,2%_%time:~6,2%.services" 

 

ping localhost -n 61 > nul 

 

Goto loop 

 

Host Data Collection:  

15 minute intervals:  

Win32dd memory capture;  
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1 minute intervals: (as text files) 

C:\WINDOWS\System32\drivers\etc\services; SysInternals: Listdlls, 

LogonSessions, Handle, Pslist, NetStat; Once per logon: PsInfo 

Network Collection: 

Always on:  

Wireshark to collect PCAP, Snort IDS with standard rule set to log alerts 

Data Preprocessing: 

Network feature extraction- Fullstats by Andrew Moore of Cambridge 

University, configured to Ubuntu OS supplied on hard drive. 

Host text files feature extraction - Weka version 3.6 

http://www.cs.waikato.ac.nz/ml/weka/  

Determine best Machine learning algorithm - Weka Class Algs [31] from 

http://wekaclassalgos.sourceforge.net/ 

MS Excel to merge CSV features files.  

Data Features Classification: 

Weka version 3.6 http://www.cs.waikato.ac.nz/ml/weka/  
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